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EFFECTS OF MU OPIOID RECEPTOR AGONISTS ON INTRACRANIAL SELF-

STIMULATION IN THE ABSENCE AND PRESENCE OF PAIN IN RATS   

 
By: Ahmad A. Altarifi, Ph.D. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of 
Philosophy at Virginia Commonwealth University 
 
Virginia Commonwealth University, 2013 
 
Director: S. Stevens Negus, Ph.D.  
Professor, Department of Pharmacology and Toxicology 

 

Pain is a significant health problem.  Mu opioid receptor agonists are used clinically as 

analgesics, but their use is constrained by high abuse liability. Intracranial self-stimulation 

(ICSS) is a preclinical behavioral procedure that has been used to assess abuse potential of 

opioids, and drug-induced facilitation of ICSS is interpreted as an abuse-related effect. ICSS 

can also be used as a behavioral baseline to detect affective dimensions of pain.  Specifically, 

pain-related depression of ICSS can model pain-related depression of behavior and mood, and 

drug-induced blockade of pain-related ICSS depression can serve as a measure of affective 

analgesia. This dissertation used mu agonists that vary in efficacy at the mu receptor 

(methadone> fentanyl> morphine> hydrocodone> buprenorphine> nalbuphine) and compared 

their effects on ICSS in the absence (phase one) or presence (phase 2) of pain. Adult male 

Sprague-Dawley rats were equipped with intracranial electrodes targeting the medial forebrain 

bundle and trained to lever press for brain stimulation. Different frequencies of stimulation 

maintained a frequency-dependent increase in ICSS rates, and permitted detection of both rate-
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increasing and rate-decreasing treatment effects. During phase 1, medium- and high-efficacy 

mu agonists produced initial rate-decreasing effects, followed by abuse-related rate-increasing 

effects at later time points. Repeated morphine administration produced tolerance to its own 

rate-decreasing effects, cross-tolerance to rate-decreasing effects of other mu agonists, and 

enhanced expression of rate-increasing effects. Low efficacy mu agonists only produced rate-

increasing effects, which were enhanced after repeated morphine. These results suggest that 

previous opioid exposure increases expression of abuse-related facilitation of ICSS by mu 

agonists regardless of efficacy. During phase 2, intraperitoneal administration of lactic acid 

(1.8%) served as a noxious stimulus to depress ICSS. All mu agonists blocked acid-induced 

depression of ICSS at doses similar to those that facilitated ICSS in the absence of pain. A 

higher intensity noxious stimulus (5.6 % acid) produced further depression of ICSS and reduced 

the antinociceptive potency of both methadone and nalbuphine. Morphine antinociception was 

resistant to tolerance in the assay of acid-depressed ICSS. Overall, these results provide a 

basis for comparing determinants of abuse-related opioid effects in the absence of pain with 

their affective analgesic effects in the presence of pain. 
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CHAPTER ONE 

Introduction and Background 

 

 

1.1. Opioid background 

Opioids are a group of drugs that are widely used in clinical and veterinary 

medicine for multiple purposes. The prototype opioid morphine is a naturally occurring 

alkaloid that can be extracted from the juice that leaks from the poppy plant, Papaver 

somniferum. Many synthetic and semi-synthetic analogues have been synthesized in 

the last century. The origin of human use of opioids is not exactly known, but there is 

some evidence that opioids were used by the Greeks, Indians, and Sumerians 

(Brownstein, 1993). They extracted the juice (called opium) from the poppy seed pods 

and used it as a euphoriant in religious rituals, as a poison, and medicinally to treat pain 

and other illnesses (Trescot et al., 2008). In 1804, a German scientist isolated the main 

active ingredient in opium: morphine (Klockgether-Radke, 2002). The name is derived 

from Morpheus, after the Greek god of dreams. Later, other naturally occurring opioids 

were identified, and pharmaceutical companies initiated their sales of morphine. The 

high abuse potential of morphine encouraged researchers to synthesize compounds 

that resemble morphine in its beneficial properties, but with lower abuse potential.  

These compounds have been classified as “semi-synthetic” (i.e. derived from morphine 
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or other alkaloids found in opium) or “synthetic” (structurally distinct from morphine). 

Heroin (first synthesized in 1874) was the first semi-synthetic opioid, and despite its 

popularity at the beginning as a substitute to morphine, it had more potential of being 

abused and misused by patients. This led to an increase in research focusing on 

synthesizing alternative compounds to morphine that might produce fewer side effects 

but maintaining analgesic properties. Table 1.1 summarizes the opioid ligands that were 

used in this project. 

 

Table 1.1. Classification and date of discovery for mu opioid agonists that are 

used in this project 

 

 

 

 

 

 

  

Currently, opioids are among the most effective and reliable tools available to 

clinicians for the treatment of strong pain associated with acute trauma (e.g. surgery, 

burns) or chronic pain associated with cancer and other illnesses (Gutstein and Akil, 

2005). For example, recent surveys indicate that opioid analgesics account for more 

than 10% of all prescription drug sales in the U.S. (Max, 2003), and four of the 10 most 

prescribed drugs in 2005 were opioid analgesics 

Ligand Classification Date of discovery 

Methadone Synthetic 1937 

Fentanyl Synthetic 1960 

Morphine Natural 1804 

Hydrocodone Semi-synthetic 1920 

Buprenorphine Semi-synthetic 1980s 

Nalbuphine Semi-synthetic 1960s 

Naltrexone Semi-synthetic 1963 
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(http://www.rxlist.com/script/main/art.asp?articlekey=79509). In 2009, Vicodin (trade 

name for hydrocodone containing acetaminophen) was the most prescribed drug in the 

U.S. (IMS National Prescription Audittm). These statistics show the impact of pain on 

society, and the important role that opioids can play in this clinically relevant topic. 

Despite their clinical importance and significant role in decreasing the “feel of 

pain”, physicians are cautious in prescribing narcotics due to some unwanted effects 

including respiratory depression, nausea and vomiting, constipation, tolerance 

development, interaction with other drugs, and perhaps most importantly, abuse liability 

(Inturrisi, 2002; Bhamb et al., 2006). For instance, oxycodone, fentanyl and morphine 

prescriptions were increased by 50, 150, and 60% between 1999 and 2002, 

respectively (Compton and Volkow, 2006), and during the same period, there was a 

91.2% increase in deaths due to opioid poisoning (Paulozzi et al., 2006). More recently, 

the Substance Abuse and Mental Health Services Administration (SAMHSA) national 

survey in 2011 showed that 4.5 million Americans used pain relievers for illicit purposes 

during the past month of the survey (SAMHSA, 2011). The illicit use of prescription 

analgesics was second only to marijuana in prevalence of illicit drug use. The same 

survey showed that heroin addiction almost doubled between the years 2007-2011. In 

2005, the estimated cost of abusing prescription opioids in the United States was about 

9.5 billion dollars (Birnbaum et al., 2006). This problem also extends to other regions in 

the world such as Europe and Jordan (Casati et al., 2012). Thus, the above statistics 

suggest two essential problems:  

1) The increased use of opioids in the last 2 decades highlights the failure to find 

a better and safer analgesic that can replace opioids in the clinic, and 

http://www.rxlist.com/script/main/art.asp?articlekey=79509
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2) Science has failed to solve the secrets that underlie the mechanism of opioid 

addiction, and hence the abuse potential of opioids is hardly avoidable. 

Thus, although much research and effort has been devoted to solve the above 

problems, research has so far failed to discover effective alternatives to opioid 

analgesics or to adequately understand the neurobiology of pain or addiction. This 

project proposes a new assay to measure “pain” in laboratory animals, and this may 

improve predictive validity with clinical results. This issue will be discussed thoroughly in 

section 1.3. 

 

1.2. Opioid receptors: subtypes / signaling / mechanism of action  

After the discovery of morphine and development of novel semi-synthetic and 

synthetic opioids, the next advance in the opioid field was the discovery of their 

mechanism of action. The stereospecificity of opioid effects suggested the existence of 

some specific sites (i.e. receptors) that could be targeted after opioid administration 

(Goldstein et al., 1971). Using a radio-labeled opioid antagonist, the first evidence of the 

presence of these receptors in the nervous system was reported in 1973 (Pert and 

Snyder, 1973; Simon et al., 1973; Terenius, 1973). The presence of these receptors 

encouraged researchers to look for opioid-like endogenous compounds, and the first 

was identified in 1975 (Hughes, 1975; Hughes et al., 1975). Further investigations 

identified three major subtypes of opioid receptors: Mu, Delta, and Kappa. These 

receptors were cloned in the last 2 decades (Evans et al., 1992; Chen et al., 1993; 

Meng et al., 1993). A fourth type have been suggested more recently, the opioid 

receptor-like 1 (ORL1) receptor, and its pharmacology and significance are under 
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investigation (Meunier et al., 1995). Further pharmacological characterization has 

revealed that mu opioid receptors mediate most of morphine’s desired effects, such as 

analgesia, as wells as undesired effects, such as abuse potential. One goal of the 

current project is to better understand the behavioral profile of mu agonist-induced 

abuse-related and analgesic effects, and the relationship between these effects. 

Characterization of this behavioral profile can then provide a foundation for research on 

mechanisms of those effects and strategies to dissociate them.  

Opioid receptors are classified as G-protein coupled receptors (GPCRs). As with 

all GPCRs, these 7-transmembrane protein receptors bind extracellulary with the 

receptor ligand (such as morphine), and intracellularly with a complex of proteins (G-

protein) consisting of three subunits: Alpha, Beta and Gamma. The alpha subunit in turn 

binds to Guanosine Diphosphate (GDP) during the inactive state of the receptor (hence 

the letter “G” in GPCR). Upon activation of the receptor (e.g. binding of an agonist), 

guanosine triphosphate (GTP) replaces GDP at the guanine nucleotide binding site, and 

GDP dissociates from the alpha subunit. This exchange promotes dissociation of all 

three subunits from the receptor, and also enhances the dissociation of alpha/GTP 

complex from the beta/gamma complex. Upon dissociation, both complexes can 

activate or deactivate different downstream targets such as enzymes, proteins, and/or 

transcription factors. The alpha subunit has GTPase activity that hydrolyzes GTP to 

GDP to promote rebinding with the beta/gamma complex and the receptor to terminate 

signaling (for review, (Lopez-Ilasaca et al., 1997)). Figure 1.1 summarizes the GPCR 

receptor activation/deactivation cycle (adapted from 

http://commons.wikimedia.org/wiki/File:GPCR-Zyklus.png). 

http://commons.wikimedia.org/wiki/File:GPCR-Zyklus.png
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Figure 1.1. Sequence of events following the binding of a ligand to a G-protein 

coupled receptor. Upon binding of an agonist (step 2), Guanosine Triphosphate (GTP) 

replaces GDP at the guanine nucleotide binding site, and GDP dissociates from the 

alpha subunit (step 3 and 4). This exchange promotes dissociation of all three subunits 

from the receptor, and also enhances the dissociation of alpha/GTP complex from the 

beta/gamma complex. Upon dissociation, both complexes can activate or deactivate 

different downstream targets such as enzymes, proteins, and/or transcription factors. 

The alpha subunit has GTPase activity that hydrolyzes GTP to GDP (step 6) to promote 

rebinding with the beta/gamma complex (Step 1). 
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GPCRs are classified depending on the alpha subunit subtype. In the case of 

opioid receptors, they are linked to Gi/o. After a mu receptor agonist binds to the mu 

receptor, targets of the GTP-bound alpha subunit and free beta/gamma complex 

include: 

-  the efflux of potassium through G protein-coupled inwardly-rectifying 

potassium channels (GIRKs) (Lober et al., 2006),  

- inhibition of adenylate cyclase (and the subsequent decrease in intracellular 

cyclic-Adenosine Monophosphate (cAMP)) (Murthy and Makhlouf, 1996), 

- inhibition of N-type voltage-dependent calcium channels (Yu et al., 1990; 

Soldo and Moises, 1998; Ikeda et al., 2000), and 

- stimulation of mitogen-activated protein kinase (MAPK) pathway. 

Overall, these events result in reduced neuronal cell excitability leading to a 

reduction in transmission of nerve impulses along with an inhibition of neurotransmitter 

release as summarized in figure 1.2 (McDonald and Lambert, 2005; Trescot et al., 

2008).  

 

Figure 1.2. Summary of 

downstream signaling 

and second messengers 

coupled to an active 

GPCR/Gi/o. (McDonald 

and Lambert, 2005) 
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Repeated drug administration (such as daily administration of morphine) has 

been associated with two processes involving neural adaptation: tolerance and 

sensitization. Tolerance is a term used to describe the need for an increasing dose to 

achieve the same effect (Nestler, 1996). Possible mechanisms that contribute to opioid 

tolerance include receptor desensitization/internalization. Both processes may be 

involved in opioid tolerance after acute (i.e. after single opioid injection) or repeated 

opioid administration. The molecular mechanism for desensitization starts with 

phosphorylation of the mu receptor by G-protein receptor kinase (GRK), followed by 

recruitment of beta-arrestin, which uncouples the receptor from its downstream 

signaling cascade (Gainetdinov et al., 2004; DeWire et al., 2007; Nagi and Pineyro, 

2011). Under some circumstances (depending on drug dose and drug efficacy at the 

receptor), these events of receptor phosphorylation and beta-arrestin binding may lead 

eventually to receptor internalization (or downregulation) (Borgland et al., 2003). With 

both desensitization and downregulation, the density of “functional” opioid receptor is 

decreased, and that will diminish opioid effects, although receptor internalization may 

also permit recycling of functional receptors back into the membrane. Figure 1.3 

summarizes receptor desensitization and internalization after binding of a ligand to 

GPCR receptor. 

The other phenomenon that is also associated with repeated opioid 

administration is behavioral sensitization. It involves a progressive and enduring 

enhancement in the motor stimulant effect elicited by a subsequent drug challenge 

(Vanderschuren and Kalivas, 2000). Mechanisms of this phenomenon may include 

cellular adaptations in specific neural populations such as up-regulation of AMPA 
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receptor subunit GluR1 in the VTA (Fitzgerald et al., 1996; Carlezon et al., 1997) and 

induction of delta-FosB in the NA and amygdala (Zachariou et al., 2006; Kaplan et al., 

2011)  

 

Figure 1.3. Sequence of events for desensitization and internalization of 

mu-opioid receptor after binding of an agonist to the receptor. (adapted 

from (Borgland et al., 2003).   
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 Mu opioid receptors have been localized extensively throughout the brain. 

Some of these areas include nucleus accumbens (NA), periaquiductal gray 

(PAG), ventral tegmental area (VTA), rostroventral medulla (RVM), amygdala, 

and thalamus (Mansour et al., 1987; Dilts and Kalivas, 1989; Mansour et al., 

1994; Pinto et al., 2008). Although mu receptors have been identified in other 

locations, the above brain areas are essential for analgesic and rewarding effects 

of opioids. One procedure to study these effects is through direct administration 

of the agonist into a specific brain region. For instance, administration of mu 

agonists into RVM, PAG, VTA, or amygdala was sufficient to induce 

antinociception in preclinical assays of pain-stimulated behavior (discussed later) 

as their dependent measure (Bodnar et al., 1988; Manning et al., 1994; Borszcz, 

1995; Helmstetter et al., 1995; Fields, 2000; Hurley et al., 2003). Likewise, direct 

administration of mu agonists into NA or VTA was sufficient to maintain opioid 

self-administration in animals (Olds, 1982; Welzl et al., 1989; Devine and Wise, 

1994). Also, local injection of mu agonists in the VTA (Phillips and LePiane, 

1980; Zangen et al., 2002), but not into the NA (Olmstead and Franklin, 1997), 

produced conditioned place preference (CPP), which is an assay used to 

measure abuse-related drug reward in animals. These findings suggest that 

antinociceptive and abuse-related effects of mu agonists can be localized, for the 

most part, in separate brain areas, but they could be integrated and merged in 

others, such as the VTA.  

So far, the VTA appears to be an especially interesting site for convergent 

antinociceptive and rewarding effects of mu agonists. The VTA is the site where the 
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mesolimbic dopaminergic neurons cell bodies are located. These neurons project to the 

NA, and stimulation of this pathway is often correlated with the rewarding effect of 

different reinforcers, such as food, sex, and drugs of abuse. In the field of opioid 

pharmacology, direct mu opioid agonist administration into the VTA excites 

dopaminergic neurons (Matthews and German, 1984). Further studies indicated that 

posterior VTA seems to be more relevant for mu agonist-induced reward, such that mu 

receptors are present in a higher density in posterior VTA than anterior VTA (Mansour 

et al., 1995), and direct microinjection of mu agonists in the posterior VTA produced 

more robust acquisition of drug self-administration, conditioned place preference (CPP), 

and locomotor activity (Zangen et al., 2002). GABAergic neurons are also present in a 

high density in the posterior VTA, and opioid receptors are co-localized on these 

inhibitory, non-dopaminergic neurons (Garzon and Pickel, 2001; Svingos et al., 2001). 

From these findings, it has been suggested that mu opioid agonists activate 

dopaminergic neurons by decreasing the inhibitory influence of the caudally located 

GABAergic cells, a term called disinhibition (Johnson and North, 1992). 

In summary, mu opioid receptors have been localized in widespread areas in the 

brain. These receptors are GPCRs, and they are linked to the inhibitory G-protein 

subtype, Gi/o. Mu opioid receptors are located on inhibitory GABAergic interneurons in 

the VTA, and once they bind to these cells, they attenuate GABA-mediated inhibition of 

dopaminergic neurons located also in the VTA. The final output is an increase in the 

dopaminergic neurons firing in the mesolimbic pathway, and an increase in dopamine 

release in the NA. 
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1.3. Pain: significance, neurobiology, and animal models of pain 

 Pain is a significant and pervasive public health problem. It has been estimated 

that 42% of US adults experience pain in their daily lives (Lethbridge-Cejku et al., 2004), 

and that this pain accounts for more than 20% of all medical visits and approximately 50 

million lost work days per year (Max, 2003). The total cost to the US economy in pain-

related healthcare and disability is estimated at over $100 billion per year (Society, 

2000). 

 Pain is defined as “an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, or described in terms of such damage” (pain, 

1979). Noxious stimuli that produce tissue damage and inflammation activate primary 

afferent nociceptors located in the peripheral nervous system. These pseudounipolar 

neurons have their cell bodies in the dorsal root ganglion, with a peripheral terminal 

directed toward the skin, muscles, or visceral tissues, and a central terminal directed to 

the dorsal horn of the spinal cord. They transmit damage signals from peripheral organs 

to the centrally located second order neurons, also called spinothalamic neurons. These 

neurons have their cell bodies in the spinal cord, and after they cross the midline, they 

project to thalamic nuclei, where they synapse with tertiary neurons in the thalamus. 

Axons of the tertiary neurons project to different cortical areas such as somatosensory 

cortex I (SI), somatosensory cortex II (SII), anterior cingulate cortex (ACC) and insula.  

Limbic regions receive pain information through from two general sources.  First, 

secondary neurons originating in the spinal cord also send bottom-up projections to 

brainstem areas, such as PAG, RVM, hypothalamus, and parabrachial nucleus (PBN). 

Some of these areas (e.g. the PBN) send projections to limbic areas such as the VTA 
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(Giesler et al., 1979; Cliffer et al., 1991; Coizet et al., 2010). Second, cortical areas such 

as SII, ACC and insula send top-down projections to limbic areas, such as VTA, NA, 

and amygdala. Thus, limbic areas such as VTA, NA, and amygdala receive nociceptive 

input via two routes: a ventral pathway that is mediated by brain stem areas such as 

PBN, and a dorsal pathway that is mediated by corticolimbic connections. Moreover, 

neurons in the PAG send projections to the RVM and dorsolateral pontine tegmentum 

(DLPT), and both of them send descending projections back to the spinal cord for 

further modulation of nociceptive information (Mantyh and Peschanski, 1982; Basbaum 

and Fields, 1984). Figure 1.4 summarizes some of these connections that are of interest 

to the current document. These connections have consolidated the view that pain is a 

complex experience encompassing sensory, affective and cognitive elements (Zubieta 

et al., 2001; Neugebauer et al., 2009). 
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Figure 1.4. Simplified cartoon showing major pain pathways and 

connections between them inside the nervous system. Arrows indicate the 

direction of signal between regions. Some areas have reciprocal 

connection. Asterisks indicate that mu opioid receptors have been 

localized in that area. ACC: anterior cingulate cortex; Amg: Amygdala; 

DLPT: dorsolateral pontine nucleus; DRG: dorsal root ganglion; NA: 

nucleus accumbens; PAG: periaqueductal gray; PBN: parabrachial 

nucleus; PN: primary nociceptors; RMTg: rostromedial tegmentum; RVM: 

rostroventral medulla; SI, II: Sensory area 1 and 2; VTA: ventral tegmental 

area. 
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 Analgesia is defined as absence of pain in response to stimulation that would 

normally be painful (International Association for the Study of Pain, 1994). Despite 

recent advances in research on pain mechanisms and analgesic drug development, 

there has been little evolution in the types of drugs used to treat pain.  For decades, the 

most widely used analgesics have included mu opioid agonists such as morphine, anti-

inflammatory steroids such as cortisone, and non-steroidal anti-inflammatory drugs 

(NSAIDs) such as aspirin. As mentioned before, opioids are still the drug of choice over 

other options to treat severe, chronic types of pain. 

 Pain is essentially a subjective experience, and its existence in humans is 

typically assessed by verbal report. This report is usually guided by a scale that ranges 

from 0-10, with “0” indicating “no pain” and “10” indicating “worst pain imaginable.” 

Alternatively, patients can complete a questionnaire that provides added verbal detail to 

their pain perception. An example of such a questionnaire is the Brief Pain Inventory 

(BPI) (Daut et al., 1983), which provides information on the intensity of pain as well as 

the degree to which pain interferes with function. The BPI also asks questions regarding 

pain relief, pain quality, and patient's perception of the cause of pain. 

 In preclinical settings, assays of animal behavior have played a key role in 

research on the neurobiology of pain and development of analgesic drugs (Negus et al., 

2006). These preclinical assays share two common elements: (a) a set of independent 

variables implemented with the intent of producing a pain state (i.e. noxious stimuli), 

and (b) a dependent measure of behavior interpreted as evidence of that pain state. A 

noxious stimulus can be chemical, mechanical, thermal, or electrical in modality. In all 

these cases, application of the noxious stimulus is intended to produce “pain,” and 
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changes in behavior produced by the noxious stimulus are interpreted as evidence of 

“pain.” Drugs or other treatments can then be evaluated for their effects on expression 

of the pain-related behavior. The behavioral outcomes usually fall into one of the 

following two categories: 

1) Pain-stimulated behaviors: include behaviors that increase in rate, frequency or 

intensity after a noxious stimulus. These include, but are not limited to, 

withdrawal reflexes from escapable stimuli (e.g. tail withdrawal after immersion of 

the tail into water heated to a noxious temperature), withdrawal-like behaviors 

from inescapable stimuli (e.g. stretching/writhing elicited by intraperitoneal (IP) 

injection of dilute acids or chemical irritants), and vocalization; 

2) Pain-depressed behaviors: include behaviors that decrease in rate, frequency or 

intensity after a noxious stimulus. Examples of this type of behavior include 

depression of feeding, locomotion, and operant responding, sleep and others.  

 

Antinociception in assays of pain-stimulated behavior are indicated by drug-

induced decreases in the target behavior. However, exclusive reliance on pain-

stimulated behaviors to evaluate effects of opioids or other candidate analgesics is 

problematic for several reasons (Negus et al., 2006). Perhaps most importantly, drug-

induced decreases in pain-stimulated behavior can be produced not only by a selective 

reduction in sensory sensitivity to the noxious stimulus (i.e. true analgesia) but also by 

nonselective effects such as motor impairment (resulting in “false positive” effects). 

Another drawback of relying on pain-stimulated behaviors is the lack of face validity of 

these behaviors with problematic dimensions of clinical pain.  Noxious stimuli can elicit 
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withdrawal reflexes and other pain-stimulated behaviors in humans, and there are 

clinical instances (e.g. surgery) in which it is desirable to reduce these behaviors.  

However, clinical suppression of pain-stimulated behaviors is usually managed with 

transient exposure to anesthetics, and long-term suppression of pain-stimulated 

behaviors can increase risk of injury by preventing adaptive withdrawal responses from 

noxious stimuli. Clinically problematic pain, by comparison, is often expressed as 

functional impairment and depression of behavior and mood, and the goal of treatment 

is to normalize function and mood. As mentioned earlier, the Brief Pain Inventory is one 

instrument that measures the impact of pain conditions on quality of life, such as 

general activity, mood, walking ability, normal work, sleep, and social activity. Most of 

these behaviors are often depressed during clinically relevant pain conditions, and 

effective analgesics will reverse this depression.  

In contrast to pain-stimulated behaviors, antinociception in assays of pain-

depressed behavior is indicated by an increase in the target behavior, and as a result, 

these assays are not vulnerable to false-positive effects of drugs that produce motor 

impairment. Assays of pain-depressed behavior may also add value in analgesic drug 

development for two other reasons. First, the diagnosis of pain in both human and 

veterinary medicine often relies on measures of pain-depressed behavior (also referred 

to as “functional impairment”), and restoration of pain-depressed behavior is often a 

goal of treatment (Cleeland and Ryan, 1994; Dworkin et al., 2005). The utility of these 

measures in clinical contexts suggests that pain-depressed behaviors may also be 

useful as endpoints in research. Second, pain-related depression of behavior is often 

accompanied by comorbid depression of mood in humans (Bair et al., 2003; Maletic and 
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Raison, 2009), and preclinical research on pain-depressed behavior may provide 

insights into the expression, neurobiology and modulation of the affective dimensions of 

pain. Thus, assays of pain-depressed behavior would serve as a better tool to evaluate 

candidate analgesics in the laboratory animals and would produce better translational 

pain research to the clinical field. 

Decreases in locomotion, feeding, and positively reinforced operant responding 

are common examples of pain-depressed behaviors in laboratory animals. Operant 

conditioning provides one strategy for generating high, stable and quantifiable rates of 

baseline behavior that can be used to assess effects of putative pain states. Intracranial 

self-stimulation (ICSS) in rats is one example of operant responding. In this procedure, 

rats are implanted with intracranial electrodes targeting the medial forebrain bundle, and 

lever-press responding is maintained under a schedule of brain stimulation. The ability 

of brain stimulation to function as a reinforcing stimulus was first discovered in 1954 

(Olds and Milner, 1954), and ICSS maintained by stimulation of the medial forebrain 

bundle is mediated by activation of excitatory inputs to the mesolimbic dopamine 

neurons that originate in VTA. Electrical stimulation to the medial forebrain bundle, and 

the subsequent activation of dopaminergic neurons in the mesolimbic pathway, 

functions as a highly reinforcing stimulus compared to other reinforcers such as food. 

Moreover, it generates a stable behavior that can be efficiently assessed during short 

daily behavioral sessions, and it is non-satiable compared to behaviors maintained by 

other reinforcers such as food. Also, using ICSS gives the experimenter the ability to 

determine the anatomical significance of brain areas in pain and/or analgesia by directly 

implanting the electrode into the area(s) of interest in the animal’s brain. In this case, 
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the brain of area of interest is the VTA given its potential role in both abuse-related and 

analgesic effects of mu agonists. Finally, it has been shown that administration of an 

acute noxious stimulus, such as intraperitoneal injection of lactic acid, depresses ICSS, 

and this depression can blocked by pretreatment with clinically effective analgesics 

such as NSAIDs. Thus, for all these reasons, this project uses ICSS as a behavioral 

baseline for research on pain-depressed behavior that will be beneficial to examine the 

pharmacology of opioids in the presence and absence of noxious stimulus.  

 

1.3.1 Antinociceptive effects of opioids in assays of pain-stimulated behavior 

Pain-stimulated behaviors are widely used in animal research to evaluate drug-

induced antinociception. As one simple example, tail-withdrawal assays of thermal 

nociception apply a noxious thermal stimulus (e.g. a hot light or hot water) to the tail of a 

rodent or non-human primate and measure the latency to a tail withdrawal response. In 

this example, application of the hot stimulus is intended to produce “pain,” and tail 

withdrawal is an unconditioned behavioral response interpreted as evidence of “pain”. 

The intensity of the noxious stimulus (hot water) is often manipulated by simply 

changing the temperature of the hot water. Another example to induce “pain” in animals 

is by injecting them with a chemical irritant, such as intraperitoneal injection of dilute 

acid. This will produce withdrawal-like stretching/writhing from an inescapable stimulus 

(in this case, acid). In both examples, drugs or other treatments can then be evaluated 

for their effects on expression of the pain-related behavior.  

 Opioids have been extensively studied in these and other assays of pain-

stimulated behavior, and opioids consistently produced antinociception in these assays. 
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For example, pretreatment with morphine produced thermal antinociception in a warm-

water tail-withdrawal assay in rats and mice (Morgan et al., 1999; Cook et al., 2000), 

and decreased the number of stretches after IP administration of acid in mice and rats 

(Barbaz et al., 1988; Pereira Do Carmo et al., 2009). These assays are used also to 

determine the role of drug efficacy at the mu opioid receptor. For example, low-efficacy 

mu agonists such as nalbuphine and buprenorphine often produce antinociception 

against low- but not high-intensity noxious thermal stimuli, whereas higher efficacy mu 

agonists such as morphine, fentanyl and methadone are more likely to produce 

antinociception against both low- and high-intensity noxious stimuli (Morgan et al., 1999; 

Negus and Mello, 1999; Cook et al., 2000). Such data provide one source of evidence 

to suggest that antinociception against low-intensity thermal noxious stimuli has lower 

efficacy requirements than antinociception against high-intensity thermal noxious 

stimuli. Likewise, high- and low-efficacy mu agonists produced a decrease in stretching 

response after IP administration of acid (Pchelintsev et al., 1991; Patrick et al., 1999). 

However, to the author’s knowledge, the interaction between drug efficacy at the mu 

receptor and noxious stimulus intensity has not been investigated previously in assays 

of chemically-induced stretching. The author expects that high-efficacy agonists will 

retain their antinociceptive effectiveness at high- and low- stimulus intensities, whereas 

low-efficacy agonists will lose their antinociceptive effects at the high stimulus intensity.  

In addition to these effects of mu opioid efficacy, antinociception in assays of 

pain-stimulated behavior is also modified by regimens of prior opioid exposure. For 

example, repeated morphine administration produced tolerance to morphine’s 



www.manaraa.com

   

 - 21 - 

antinociception effects in both a warm-water tail-withdrawal assay (Walker and Young, 

2001) and in an assay of acid-stimulated stretching (Taber et al., 1969).   

 The goal of this project was to extend this preclinical assessment of opioid 

antinociception to an assay of pain-depressed behavior. In particular, experiments in 

this project will explore the degree to which mu agonist antinociception in an assay of 

pain-depressed ICSS is determined by the efficacy of the mu agonist and by the degree 

of prior opioid exposure. 

 

1.4. Intracranial self-stimulation and opioids 

As a complement to assessment of mu agonists’ effects on ICSS in the presence 

of pain, we also examined effects of mu agonists on ICSS in the absence of pain.  As 

mentioned earlier, ICSS comprises a family of operant procedures in which responding 

is maintained by electrical stimuli delivered to target brain regions such as the medial 

forebrain bundle at the level of the lateral hypothalamus (Olds and Milner, 1954; 

Carlezon and Chartoff, 2007). One application of ICSS has been to generate stable 

baselines of schedule controlled responding for use in evaluating abuse-related drug 

effects (Kornetsky et al., 1979; Wise, 1998). Within this research tradition, facilitation of 

ICSS (indicated by increased rates of ICSS) is often interpreted as a rewarding drug 

effect that may contribute to, or be predictive of, abuse liability by that drug in humans. 

For example, amphetamine is representative of one class of abused drugs (i.e. indirect 

dopamine agonists) that reliably and robustly facilitate ICSS across a broad range of 

experimental conditions in rats (Esposito et al., 1980; Do Carmo et al., 2009). 
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Mu opioid agonists, including morphine, constitute another class of abused drugs 

that has been evaluated extensively in ICSS, but mu agonist effects on ICSS have been 

less consistent than effects produced by amphetamine-like stimulants. More specifically, 

mu agonist effects seem to be influenced by the particular type of procedure used to 

assess ICSS performance, and by other factors that include pretreatment time and 

extent of prior exposure to opioids. In the simplest type of ICSS procedure, responding 

produces electrical stimulation of a constant magnitude, and the primary dependent 

measure is the rate of responding or reinforcement. This approach can generate 

relatively constant rates of ICSS, and early studies using this approach revealed two 

major findings (Adams et al., 1972; Lorens and Mitchell, 1973; Koob et al., 1975). First, 

acute treatment with morphine or other mu agonists produced effects with a biphasic 

time course consisting of an initial decrease followed by a subsequent increase in rates 

of ICSS. Second, repeated or chronic treatment produced tolerance to the initial rate-

decreasing effects and earlier expression of rate-increasing effects. As appreciated by 

investigators using this constant-reinforcer magnitude approach, expression of rate-

decreasing or rate-increasing effects depended in part on baseline ICSS rates 

engendered by the selected reinforcer magnitude. High stimulus magnitudes (i.e. high 

intensity or frequency) maintained high ICSS rates preferentially sensitive to rate-

decreasing effects, whereas lower stimulus magnitudes maintained lower ICSS rates 

preferentially sensitive to rate-increasing effects. 

 More recent studies have evaluated mu agonist’s effects using more 

sophisticated ICSS procedures, in which reinforcer magnitude is systematically 

manipulated during each experimental session by manipulating either the intensity or 
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the frequency of electrical stimulation. Although these procedures have the potential to 

efficiently assess drug effects on a wide range of ICSS rates maintained by a wide 

range of reinforcer magnitudes, the focus has been on threshold reinforcer magnitudes 

that maintain low rates or low probabilities of responding and are especially sensitive to 

rate-increasing effects linked to abuse liability. In accordance with this sensitivity, some 

studies reported rapid facilitation of ICSS after acute treatment with low mu agonist 

doses (Kornetsky and Esposito, 1979; Carlezon and Wise, 1993; Jha et al., 2004), 

although this finding has not always been obtained (Stratmann and Craft, 1997; Pereira 

Do Carmo et al., 2009). Other studies have provided evidence to suggest that, in 

accordance with earlier studies using simpler procedures, facilitation of ICSS may be 

more robust later in the time course after acute mu agonist treatment or after chronic 

treatment (Craft et al., 2001; O'Neill and Todtenkopf, 2010). 

 In the current project, the effect of mu opioid agonist on ICSS in the presence 

and in the absence of pain had been evaluated using a ‘frequency–rate’ procedure, in 

which the frequency of the reinforcing electrical stimulus was varied to generate a wide 

range of response rates during each daily session. 

 

1.5. Introduction to data chapters 

 The goal of this project was to assess opioid pharmacology in ICSS as an assay 

of pain-depressed behavior. As mentioned earlier, ICSS is a sensitive assay to the 

abuse-related effects of drugs of abuse, including opioids. Thus, this project evaluated 

opioid agonists in two phases: 
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1) Phase one: effects of mu opioids in the absence of noxious stimulus. During this 

phase, mu opioid agonists were tested in ICSS in conjunction with manipulation of 

different independent variables, including pretreatment time, dose, drug efficacy at the 

mu receptor, and repeated drug administration. Results of these studies are presented 

and discussed in three sections (chapters): 

a) Chapter 2: Effects of morphine dose, pretreatment time, repeated 

treatment, and rate-dependency on ICSS. Morphine is the prototype 

opioid analgesic to which all other opioids are compared. It is the first 

opioid to be discovered and isolated from the poppy plant.  

b) Chapter 3: Effects of methadone and nalbuphine on ICSS. Methadone is a 

high-efficacy mu opioid ligand, while nalbuphine is a low-efficacy ligand at 

the mu receptors. The efficacy of these drugs was determined previously 

using agonist-stimulated GTP Gamma [S] binding assay (Selley et al., 

1998). Morphine`s efficacy at the mu receptor falls between that of 

methadone and nalbuphine. 

c) Chapter 4: Effects of high-, moderate-, and low-efficacy mu opioid 

agonists on ICSS before, during, and after chronic morphine exposure. 

Methadone, fentanyl, and nalbuphine (from high to low efficacy at the mu 

receptor) were tested on ICSS before morphine exposure when subjects 

were opioid naive, during 3.2 mg/kg/day morphine exposure, and during 

18 mg/kg/day morphine exposure. The doses of morphine were selected 

to produce different degrees of tolerance and dependence, depending on 

results from the previous sections. Tolerance is a term used to describe 
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the need for an increasing dose to achieve the same effect; while 

dependence describes an altered physiological state caused by repeated 

drug exposure such that cessation of drug administration (or after 

administration of an antagonist) leads to a withdrawal syndrome (Nestler, 

1996). Dependence was evaluated using the mu-opioid receptor 

antagonist, naltrexone. 

2) Phase 2: effects of mu opioid agonists in assays of acid-stimulated stretching 

and acid-induced depression of ICSS. The same drugs used during phase one 

were tested again in ICSS as a pretreatment to a noxious stimulus. The 

noxious stimulus used in these experiments was intraperitoneal injection of 

dilute lactic acid. Lactic acid releases protons that activate C-fibers through the 

activation of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors (Julius 

and Basbaum, 2001; Tang et al., 2007), as well as acid-sensing ion channels 

(Shimada et al., 2004). An assay of acid-stimulated stretching was used as a 

comparison to acid-depressed ICSS. Two sections summarize results from this 

phase: 

a) Chapter 5: effects of mu opioid agonists on acid-stimulated stretching 

and acid-depressed ICSS: role of mu agonist efficacy and noxious 

stimulus intensity. Methadone, fentanyl, morphine, hydrocodone, 

buprenorphine, and nalbuphine (from high to low efficacy at the mu 

receptor (Selley et al., 1997; Selley et al., 1998; Thompson et al., 

2004)) were tested in both assays as a pretreatment to 1.8% lactic 

acid. Methadone and nalbuphine effects on ICSS were determined 
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during noxious stimulus intensity manipulation, and were tested as a 

pretreatment to 5.6% lactic acid.  

b) Chapter 6: Morphine antinociception during repeated morphine 

administration in assays of acid-stimulated stretching and acid-induced 

depression of ICSS. A chronic morphine regimen was used to assess 

tolerance to the antinociceptive effects of morphine in both assays. 

The regimen described in chapter 6 was chosen based on pilot 

experiments. The control group received a daily injection of saline. 



www.manaraa.com

   

 - 27 - 

 

 

 

CHAPTER TWO 

Some determinants of morphine effects on intracranial self-stimulation in rats: 

dose, pretreatment time, repeated treatment, and rate dependence 

(2011; Behavioural Pharmacology 22(7):663-673) 

 

 

 

2.1. Introduction 

 Mu agonist effects on ICSS have been less consistent than effects produced by 

other classes of abused drugs, such as stimulants. One reason behind this 

inconsistency may be related to the type of procedure used to assess ICSS 

performance. More specifically, the most commonly used procedures to assess opioid’s 

effects on ICSS are simple rate procedures and threshold determination procedures. 

One disadvantage of using simple rate procedures is that drug effects on ICSS are 

highly dependent on baseline rate of responding. Threshold determination procedures 

overcome this disadvantage; However, the focus has been on threshold reinforcer 

magnitudes that maintain low rates or low probabilities of responding and are especially 

sensitive to rate-increasing effects linked to abuse liability. Other factors that determine 

opioid effects on ICSS include pretreatment time and history of drug administration. 
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 The main goal of this study was to further evaluate the role of dose, pretreatment 

time, and regimen of repeated treatment as determinants of morphine effects on ICSS 

using a ‘frequency–rate’ procedure, in which the frequency of the reinforcing electrical 

stimulus was varied to generate a wide range of response rates during each daily 

session. 

 

  
2.2. Methods 

 

2.2.1. Subjects 

Ten adult male Sprague–Dawley rats (Harlan, Frederick, Maryland, USA) 

weighing 310–350 g at the time of surgery were used. Rats were individually housed 

and were maintained on a 12 h light/dark cycle, with lights on from 06:00 to 18:00 h. 

Rats had free access to food and water except during testing. Subject maintenance and 

research were in compliance with National Institutes of Health guidelines on care and 

use of subjects in research, and all subject-use protocols were approved by the Virginia 

Commonwealth University Institutional Animal Care and Use Committee. 

 

2.2.2. Assay of intracranial self-stimulation 

 Intracranial self-stimulation electrode implantation. Rats were anesthetized 

with isoflurane gas (2.5–3% in oxygen; Webster Veterinary, Phoenix, Arizona, USA) for 

implantation of stainless steel electrodes (Plastics One, Roanoke, Virginia, USA). One 

pole (the cathode) of each bipolar electrode was 0.25mm in diameter and covered with 

polyamide insulation except at the flattened tip, whereas the other pole (the anode) was 
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0.125mm in diameter and uninsulated. The cathode was implanted in the left medial 

forebrain bundle at the level of the lateral hypothalamus (2.8mm posterior to bregma, 

1.7mm lateral from midsaggital suture, and 7.8mm below dura). The anode was 

wrapped around one of three skull screws to serve as the ground, and the skull screws 

and electrode assembly were secured to the skull with orthodontic resin. The subjects 

were allowed to recover for at least 7 days before commencing ICSS training. 

 Intracranial self-stimulation apparatus. Experiments were conducted in sound-

attenuating boxes that contained modular acrylic test chambers (29.2 x 30.5 x 24.1 cm) 

equipped with a response lever (4.5 cm wide, extended 2.0 cm through the center of 

one wall, 3 cm off the floor), stimulus lights (three lights colored red, yellow, and green, 

positioned 7.6 cm directly above the response lever), a 2W white house light, and an 

ICSS stimulator (Med Associates, St. Albans, Vermont, USA). Electrodes were 

connected to the stimulator through bipolar cables and a swivel connector (Model SL2C, 

Plastics One). The stimulator was controlled by a computer and software that also 

controlled all the programming parameters and data collection (Med Associates). 

 Behavioral procedure. After initial shaping of lever-press responding, rats were 

trained under a continuous reinforcement schedule of brain stimulation using 

procedures similar to those described previously  (Do Carmo et al., 2009a, 2009b; 

Negus et al., 2010). During experimental sessions, each lever press resulted in the 

delivery of a 0.5-s train of square wave cathodal pulses (0.1 ms pulse duration), and 

stimulation was accompanied by the illumination of the stimulus lights over the lever. 

Responses during the 0.5 s stimulation period did not earn additional stimulation. During 

initial training sessions lasting 30–60 min, the frequency of stimulation was held 
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constant at 158 Hz, and the stimulation intensity for each rat was adjusted gradually to 

the lowest value that would sustain a high rate of reinforcement (>30 stimulations/min). 

Once this criterion was met, frequency manipulations were introduced. Sessions 

involving frequency manipulations consisted of sequential 10-min components. During 

each component, a descending series of 10 current frequencies (158–56 Hz in 0.05 log 

increments) was presented, with a 60 s trial at each frequency. A frequency trial was 

initiated by a 5 s time-out followed by a 5 s ‘priming’ phase, during which subjects 

received five noncontingent stimulations with a 0.5 s interval between each stimulation. 

This noncontingent stimulation was then followed by a 50 s ‘response’ phase, during 

which responding produced electrical stimulation under the continuous reinforcement 

schedule. Training continued with presentation of up to three sequential components 

per day, and the current intensity was again adjusted at this stage of training until rats 

reliably responded for the first three to four frequency trials of all components for at least 

three consecutive days. This intensity was then held constant for the remainder of the 

study. 

 Acute-dosing study. Once training was completed, subsequent studies 

examined (a) the time course of acute morphine doses and (b) the effects of repeated 

morphine doses. Test sessions to examine the time course of acute morphine doses 

consisted of multiple 10-min components identical to those described above. Each 

session began with three consecutive ‘baseline’ components. The first baseline 

component was considered to be an acclimation component, and data from this 

component were discarded. Data from the second and third baseline components were 

used to calculate baseline parameters of frequency–rate curves for that session (see 
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section Data analysis). Morphine (1.0–10.0mg/kg) or its vehicle (saline) was 

administered immediately after the third baseline component. Subsequently, 

consecutive pairs of test components were initiated 10, 30, 100, and 300min after 

morphine or vehicle treatment. Thus, ICSS performance was evaluated 10–30, 30–50, 

100–120, and 300–320min after each treatment. Morphine doses were delivered in a 

mixed order across rats. Test sessions were typically conducted on Tuesdays and 

Fridays and were separated by at least 3 days. Training sessions consisting of three 

components were conducted on Mondays, Wednesdays, Thursdays, and occasionally 

on Saturdays. In some cases, data from these training sessions were used to assess 

ICSS performance 24 h after high doses of morphine. In these cases, data from the 

second and third components of the training session were used as the ‘24 h time point’ 

for data analysis. 

 Chronic-dosing study. At the conclusion of the acute-dosing study, the effects 

of repeated morphine were evaluated. During the first 3 days of this phase of the study, 

rats were exposed daily to three consecutive ‘baseline’ components. Data from the first 

component each day were discarded, and data for the second and third components of 

each day were averaged to generate the baseline frequency–rate curve for comparison 

with subsequent chronic morphine effects (see section Data analysis). Immediately after 

the third baseline component on the third day, repeated morphine treatments were 

initiated for a period of four consecutive weeks. Rats were treated with 3.2 mg/kg/day 

morphine during week 1, 5.6 mg/kg/day morphine during week 2, 10mg/kg/day 

morphine during week 3, and 18mg/kg/day morphine during week 4. This regimen dose 

was used to minimize lethal outcomes after high morphine doses. Morphine doses were 
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administered daily as a single bolus injection at 1:30 p.m., and rats were exposed to two 

consecutive ICSS test components 30min after each morphine dose. The following day, 

23.5 h after each morphine dose (and immediately before the next morphine dose), rats 

were exposed to another three consecutive ICSS test components, and data from the 

second and third of these components were used for data analysis. Thus, ICSS 

performance was evaluated 30min and 23.5 h after each morphine dose. After the last 

dose of 18 mg/kg/day morphine, morphine dosing was terminated, and three-

component test sessions were conducted daily for an additional 3 days. Again, data 

from the second and third components of these sessions were used for data analysis to 

assess changes in ICSS during the first 3 days of withdrawal. The primary goal of this 

study was to quantify the effects of chronic morphine treatment and withdrawal on 

ICSS. However, to provide some assessment of potential somatic withdrawal signs, rats 

were also weighed daily, cages were inspected for evidence of diarrhea, and subjects 

were observed for signs of teeth chattering and wet-dog shakes immediately before 

each daily session. 

 

2.2.3. Drugs 

 Morphine sulfate was provided by the National Institute on Drug Abuse Drug 

Supply Program (Bethesda, Maryland, USA). All solutions were prepared in sterile water 

for subcutaneous injection. 
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2.2.4. Data Analysis 

 The primary dependent variable in this ICSS procedure was the reinforcement 

rate in stimulations/min during each frequency trial. To normalize these data, raw 

reinforcement rates from each trial in each rat were converted to percent maximum 

control rate (%MCR) for that rat. During the acute-dosing study, the MCR was 

determined daily and was defined as the mean of the maximal rates observed in any 

frequency trial during the second and third ‘baseline’ components for that day. For the 

repeated-dosing study, the MCR was determined before the initiation of repeated 

morphine dosing and was defined as the mean of the maximal rates observed during 

the second and third ‘baseline’ components over a period of three consecutive days (six 

total baseline components). Thus, %MCR values for each trial were calculated as 

(Response Rate during a Frequency Trial / MCR) x 100. 

For the acute-dosing study, data from each pair of consecutive test components 

at each time point after morphine injection were averaged and normalized to the MCR 

for that day as discussed above. For the repeated dosing study, data from each pair of 

test components 30 min and 23.5 h after injection were averaged and normalized to the 

MCR determined before the initiation of the study as discussed above. For statistical 

analysis, normalized data were compared by two-way analysis of variance (ANOVA), 

with treatment time and ICSS frequency as the two factors. A significant ANOVA was 

followed by a Holm–Sidak post-hoc test, and the criterion for significance was set at P 

value of less than 0.05. 

To provide an additional summary of ICSS performance during the repeated-

dosing study, the total number of stimulations per component was calculated as the 
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sum of stimulations delivered across all 10 frequency trials of each component. Test 

data were then normalized to Morphine effects on ICSS baseline data using the 

equation % Baseline Stimulations per Component = (Mean Stimulations per Test 

Component / Mean Stimulations per Baseline Component) x 100. Data were then 

averaged across rats under each experimental condition and compared by one-way 

ANOVA. A significant ANOVA was followed by the Dunnett post-hoc test, and the 

criterion for significance was set a priori at P value of less than 0.05. 

Finally, rate-dependent effects of morphine under selected conditions were 

examined by graphing log percent control ICSS rate after morphine treatment as a 

function of log control ICSS rate for each stimulation frequency. For the purposes of 

rate-dependency analysis, control ICSS rates at each brain stimulation frequency were 

defined as the mean number of stimulations obtained at each frequency after vehicle 

treatment for the acute studies, and during the baseline sessions before initiation of 

chronic morphine in the chronic studies. Percent control reinforcement rates after 

morphine were calculated as [(number of stimulations after morphine / number of 

control stimulations) x 100] for each stimulation frequency. The analysis was applied to 

data collected (a) 30 and 100 min after acute treatment with 3.2, 5.6, and 10 mg/kg 

morphine, and (b) 30 min after the seventh daily treatment with chronic 3.2, 5.6, and 10 

mg/kg morphine. The resulting rate-dependency plots were subjected to linear 

regression analysis using Prism 5 for Macintosh (GraphPad Software Inc., La Jolla, 

California, USA). Morphine effects were considered to be significantly rate-dependent if 

the 95% confidence limits of the slope did not include ‘0’ and if P value of less than 0.05 

for the regression. 
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2.3. Results 

 

2.3.1. Effects of acute morphine 

 For each test session, a ‘baseline’ ICSS frequency–rate curve was determined 

before testing to permit the determination of the MCR for that session. During studies of 

acute morphine effects, the average MCR was 56.3±13.0 stimulations/trial. 

Reinforcement rates for each rat during each frequency trial of a session were then 

normalized as the %MCR for that rat in that session, and the average baseline 

frequency–rate curves for each test are shown in Figure 2.1 (gray lines, open squares). 

Rats generally did not respond at frequencies of 56–79 Hz, and reinforcement rates 

increased across a frequency range of 112–158 Hz. Maximum reinforcement rates were 

usually observed at the highest stimulation frequencies. There were no statistically 

significant differences between baselines on different days (data not shown). 

 Figure 2.1 also shows the time course of effects produced by vehicle and 

morphine (1.0–10 mg/kg), and detailed statistical results are provided in the figure 

legend. Vehicle injection had little effect on ICSS frequency–rate curves, producing 

significant but only small increases in reinforcement rates at 100 Hz at 10 and 100 min 

after treatment. Morphine produced dose-dependent, time-dependent, and frequency-

dependent changes in ICSS. At earlier time points (10–30 min), the predominant effect 

of morphine was a dose-dependent decrease in reinforcement rates maintained by high 

frequencies of brain stimulation (112–158 Hz). These rate-decreasing effects peaked at 

30 min, and the highest dose of 10 mg/kg morphine nearly eliminated responding at 30 

min. In addition to these predominant rate-decreasing effects at 10 and 30min, low 
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doses of 1.0 and 3.2 mg/kg morphine also produced significant but small increases in 

reinforcement rates at some lower frequencies. After 100 min, the rate-decreasing 

effects of morphine had dissipated for all but the highest morphine dose, and doses of 

3.2 and 5.6mg/kg morphine produced significant and robust rate-increasing effects at 

intermediate frequencies of brain stimulation (71–100Hz), resulting in leftward shifts in 

frequency–rate curves relative to baseline. After 300min, none of the morphine doses 

produced effects significantly different from baseline. 

 Overall, these results suggested that morphine produced rate-decreasing effects 

with a relatively short duration of action and rate-increasing effects with a longer 

duration of action. Data with 10 mg/kg morphine suggested that a period of predominant 

rate-increasing effects may have been missed between 100 and 300 min. To evaluate 

this possibility, effects of morphine were determined 180 min after administration of 10 

mg/kg morphine in a separate group of three rats (Fig. 2.2). These results confirmed 

that 10 mg/kg produced a robust facilitation of ICSS at this time point. 

 

2.3.2. Effects of chronic morphine 

 Figure 2.3 shows effects of chronic morphine on ICSS. Each panel shows the 

baseline frequency–rate curve determined before chronic treatment together with the 

frequency–rate curves determined 30 min after morphine on the first and seventh day of 

treatment with each morphine dose (3.2–18mg/kg/day). Thus, chronic studies evaluated 

morphine effects at a time (30 min) when initial acute studies revealed primarily rate-

decreasing effects of morphine. 
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 Before chronic treatment, the MCR was 54.0±14.1 stimulations/trial, and the 

baseline frequency–rate curve was similar to that described above. Lower doses of 3.2 

and 5.6 mg/kg morphine produced only rate-increasing effects and leftward shifts in 

frequency–rate curves relative to baseline on both days 1 and 7 of treatment. In 

general, there was little difference in the effects of morphine on days 1 and 7, although 

for the initial dose of 3.2 mg/kg morphine, response rates were slightly but significantly 

higher at frequencies of 70 and 112 Hz on day 7 as compared with day 1. The higher 

two doses of 10 and 18mg/kg morphine produced only rate-decreasing effects on the 

first day of treatment, and these rate-decreasing effects were greater for 18 mg/kg than 

for 10 mg/kg morphine. However, after 7 days of treatment, these rate-decreasing 

effects were no longer apparent, and both doses produced only rate-increasing effects.

 To assess the impact of morphine abstinence and spontaneous morphine 

withdrawal on ICSS, frequency– rate curves were also determined before each daily 

morphine injection (i.e. 23.5 h after the injection on the previous day). This period of 

abstinence was associated with a dose-dependent decrease in ICSS. For example, 

figure 2.4a shows summary data for ICSS 23.5 h after the last injection of each dose, 

and during the 3 days after termination of treatment with the highest dose of 18 

mg/kg/day morphine. After 3.2 and 5.6mg/kg morphine, there were slight but non-

significant decreases in the total number of stimulations delivered. This effect, however, 

was significant after 10 and 18 mg/kg daily morphine administration. Figure 2.4b shows 

the frequency– rate curve 23.5 h after the last dose of 18 mg/kg morphine. ICSS 

recovered completely back to baseline levels within 3 days after termination of 

treatment with 18 mg/kg morphine. Rats were also observed for signs of somatic 
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withdrawal before daily ICSS sessions and for 3 days after termination of chronic 

morphine. Chronic morphine produced a dose-dependent decrease in body weight. 

From a mean ± SEM starting weight before chronic treatment of 454.2±15.7 g, 

morphine produced mean± SEM body weight losses of 1.6±1.1, 2.3±1.1, 4.4±0.9, and 

7.2±1.0% after 3.2, 5.6, 10, and 18mg/kg morphine, respectively. However, this 

decrease in body weight could not confidently be attributed to withdrawal as distinct 

from a direct morphine effect, and other somatic signs of opioid withdrawal (diarrhea, 

teeth chattering, and wetdog shakes) were not observed. 

 

2.3.3. Rate-dependent effects of morphine on intracranial self-stimulation 

 Figure 2.5 shows the degree to which morphine effects on ICSS varied as a 

function of baseline ICSS rates. Data are shown for results obtained 30min after acute 

or chronic treatment with 3.2, 5.6, and 10mg/kg morphine to illustrate the breadth of 

changes in rate dependency. Table 2.1 shows results of linear regression analysis 

applied to the rate-dependency plots shown in Figure 5, and also shows data obtained 

100 min after acute administration of each dose. Overall, the extent of rate dependency 

was influenced by dose, pretreatment time, and chronicity of treatment. Effects of the 

lowest dose of 3.2mg/kg were not rate-dependent 30 or 100min after acute 

administration, but effects were rate-dependent 30min after the last dose of chronic 

treatment. Effects of the intermediate dose of 5.6mg/kg morphine were not rate-

dependent 30min after acute treatment, but became rate-dependent 100min after acute 

treatment and 30min after the last dose of chronic treatment. Effects of the high dose of 

10 mg/kg morphine were rate-dependent under all conditions; however, the nature of 
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that rate dependency changed. Thus, acute 10 mg/kg morphine had little or no effect on 

low baseline rates of ICSS but decreased high baseline rates of ICSS. Conversely, after 

chronic administration, morphine increased low baseline rates of ICSS but had little 

effect on high baseline rates. Overall, morphine exposure produced either by the longer 

100min pretreatment time or by chronic treatment had the general effect of increasing 

the negative slope, correlation coefficient, and statistical significance of rate-

dependency plots and shifting these plots vertically upward. After chronic treatment, all 

morphine doses produced significant rate-dependent effects expressed as an increase 

in low baseline rates of ICSS and little change in high baseline rates of ICSS. 

 

2.3.4. Summary 

 This study examined morphine effects on ICSS in rats using a ‘frequency–rate’ 

procedure, in which a wide range of ICSS rates was maintained by a wide range of 

brain stimulation frequencies during each daily session. There were three main findings. 

First, acute morphine produced time-dependent changes in ICSS such that rate-

decreasing effects predominated at earlier time points (10–30 min) whereas rate-

increasing effects predominated at later time points (100–180 min). Second, repeated 

morphine produced tolerance to rate-decreasing effects and unmasked robust rate-

increasing and rate-dependent effects 30 min after morphine administration. Finally, 

withdrawal from repeated morphine produced small but significant decreases in ICSS 

that recovered over the course of 3 days after withdrawal from the highest morphine 

dose. Taken together, these data indicate that morphine dose and pretreatment time, 
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the history of morphine exposure, and baseline ICSS rate are critical determinants of 

both the magnitude and the valence of morphine effects on ICSS. 
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 Figure 2.1 
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Figure 2.1. Morphine pretreatment produced dose-dependent, time-dependent, 

and frequency-dependent changes in intracranial self-stimulation (ICSS). 

Horizontal axes: frequency of electrical brain stimulation in hertz (log scale). Vertical 

axes: ICSS rate expressed as percent maximum control rate (%MCR). (a–e) shows 

ICSS frequency–rate curves determined before (baseline) or at various times after (10–

300 min) treatment with vehicle (Veh) or morphine (1.0–10 mg/kg). Filled symbols 

indicate frequencies at which ICSS rates were significantly lower or higher than baseline 

as determined by the Holm–Sidak post-hoc test following a significant analysis of 

variance (ANOVA) (P<0.05). ANOVA results were as follows: Vehicle: significant main 

effect of frequency [F(9,45)=44.0; P<0.001], significant main effect of time [F(4,20)=3.5; 

P=0.025], no significant frequency x time interaction [F(36,180) =1.4; NS]; 1 mg/kg 

morphine: significant main effect of frequency [F(9,45)=148.0; P<0.001], no significant 

main effect of time [F(4,20)=1.6; NS], significant frequency x time interaction [F(36,180) 

=3.0; P<0.001]; 3.2 mg/kg morphine: significant main effect of frequency [F(9,45)=98.7; 

P<0.001], significant main effect of time [F(4,20)=3.9; P<0.02], significant frequency x 

time interaction [F(36,180) =2.5; P<0.001]; 5.6 mg/kg morphine: significant main effect 

of frequency [F(9,45)=88.1; P<0.001], significant main effect of time [F(4,20)=4.2; 

P<0.02], significant frequency x time interaction [F(36,180) =4.0; P<0.001]; 10 mg/kg: 

significant main effect of frequency [F(9,45)=45.4; P<0.001], significant main effect of 

time [F(4,20)=4.0; P<0.02], significant frequency x time interaction [F(36,180) =9.0; 

P<0.001]. All points show mean data for six rats, and error bars are omitted for clarity. 
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Figure 2.2 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. 10 mg/kg Morphine facilitated intracranial self-stimulation (ICSS) after 

180 min. Horizontal axis: frequency of electrical brain stimulation in hertz (log scale). 

Vertical axis: ICSS rate expressed as percent maximum control rate (%MCR). Filled 

symbols indicate frequencies at which ICSS rates were significantly higher than 

baseline as determined by the Holm–Sidak post-hoc test following a significant analysis 

of variance (ANOVA) (P<0.05). ANOVA revealed a significant main effect of frequency 

[F(9,18)=17.3; P<0.001], no significant effect of treatment [F(1,2)=9.9; P=0.09], but a 

significant frequency x treatment interaction [F(9,18)=4.0; P<0.01]. All points show 

mean data for three rats. 
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Figure 2.3 
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Figure 2.3. Effects of chronic morphine on intracranial self-stimulation (ICSS). 

Horizontal axes: frequency of electrical brain stimulation in hertz (log scale). Vertical 

axes: ICSS rate expressed as percent maximum control rate (%MCR). Rats were 

treated for 28 consecutive days with an ascending sequence of four morphine doses 

(3.2, 5.6, 10, and 18 mg/kg/day). Each dose was administered for 7 days, and ICSS 

frequency–rate curves were determined 30 min after each injection. (a–d) shows 

frequency–rate data obtained before chronic morphine (baseline) and on the first and 

seventh days of treatment with each morphine dose. Filled symbols indicate frequencies 

at which ICSS rates were significantly lower or higher than baseline, and asterisks 

indicate frequencies at which ICSS rates on day 7 were significantly higher than rates 

on day 1, as determined by the Holm–Sidak post-hoc test following a significant 

analysis of variance (ANOVA) (P<0.05). ANOVA results were as follows: 3.2 morphine: 

significant main effect of frequency [F(9,36)=28.2; P<0.001], significant main effect of 

day [F(2,8)=5.3; P<0.05], significant frequency x day interaction [F(18,72)=4.4; 

P<0.001]; 5.6 morphine: significant main effect of frequency [F(9,36) =18.5; P<0.001], 

significant main affect of day [F(2,8)=4.5; P<0.05], significant frequency x day 

interaction [F(18,72)=4.5; P<0.001]; 10 morphine: significant main effect of frequency 

[F(9,36) =25.2; P<0.001], no significant main affect of day [F(2,8)=3.0; NS], and a 

significant frequency x day interaction [F(18,72)=3.2; P<0.001]; 18 morphine: significant 

main effect of frequency [F(9,36) =27.6; P<0.001], no significant main affect of day 

[F(2,8)=2.2; NS], and a significant frequency x day interaction [F(18,72)=5.9; P<0.001]. 

All points show mean data for five rats. 
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Figure 2.4 
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Figure 2.4. Effects of morphine abstinence on intracranial self-stimulation (ICSS). 

(a) shows the total number of stimulations per component expressed as a percentage of 

baseline stimulations per component 23.5 h after the last injection of each dose and 

during the 3 days after the last dose of 18 mg/kg morphine. Horizontal axis: dose of 

morphine (mg/kg) before abstinence. Vertical axis: percent baseline number of 

stimulations per component. One-way analysis of variance (ANOVA) indicated a 

significant main effect of abstinence condition [F(6,24)=3.13; P<0.025]. Asterisks 

indicate conditions under which total number of stimulations was significantly lower than 

baseline (100%), as determined by the Dunnett post-hoc test. (b) shows the baseline 

frequency–rate curve and the frequency–rate curve determined on the day after the last 

dose of 18 mg/kg morphine. Horizontal axis: frequency of brain stimulation in hertz (log 

scale). Vertical axis: ICSS rate expressed as percent maximum control response rate 

(%MCR). Two-way ANOVA indicated a significant main effect of frequency [F(9,36) 

=57.1; P<0.001], significant main effect of day [F(1,4)=8.3; P<0.05], but no significant 

frequency x day interaction [F(9,36) =1.3; NS]. Filled symbols indicate frequencies at 

which reinforcement rates were significantly lower than baseline as determined by the 

Holm–Sidak post-hoc test. All bars and symbols show mean data from five rats, and 

error bars in the right panel show SEM 
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Figure 2.5 

 

 

 

Figure 2.5. Rate dependency of morphine effects on intracranial self-stimulation 

(ICSS). Horizontal axes: Log control ICSS rate (in units of stimulations/ frequency trial) 

at each of the 10 frequencies of brain stimulation. Vertical axes: log percent control 

ICSS rate observed 30 min after morphine treatment. (a–c) show effects of 3.2, 5.6, and 

10 mg/kg morphine during the acute-dosing phase of the study, and after the seventh 

daily dose during the chronic dosing phase of the study. All points show mean data for 

five to six rats. 
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Table 2.1.  Linear regression analysis applied to the rate-dependency plots shown in 

Fig. 5 and to data obtained 100 min after acute administration of each dose 
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CHAPTER THREE 

Role of mu-agonist efficacy as determinants of the effects of the mu agonists on 

intracranial self-stimulation in rats 

(2012; Behavioural Pharmacology 23(7):678-92) 

 

 

 

3.1. Introduction 

 One possible explanation of my findings in chapter two is that mu agonist-

induced facilitation of ICSS requires lower levels of receptor occupation and activation 

(i.e. has lower efficacy requirements and higher receptor reserve) than mu agonist-

induced depression of ICSS. According to this hypothesis, lower morphine doses would 

produce sufficient receptor occupancy and activation to facilitate ICSS, whereas higher 

doses would produce higher levels of receptor occupancy sufficient to recruit opposing 

rate-decreasing effects. Repeated morphine could selectively attenuate rate-decreasing 

effects and enhance expression of rate-increasing effects by desensitizing and/or 

downregulating some fraction of mu receptors to reduce the functional receptor density 

and attenuate the ability of morphine to produce rate-decreasing effects dependent on 

high levels of receptor occupancy (Martini and Whistler, 2007). The present study tested 

this hypothesis by testing the effect of a high- and a low- efficacy agonists on ICSS. The 

hypothesis predicted that higher-efficacy mu agonists would have sufficient efficacy to 
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produce both morphine-like rate-increasing and rate-decreasing effects, but that lower 

efficacy mu agonists might lack sufficient efficacy to produce rate-decreasing effects 

and might therefore produce enhanced rate-increasing effects. 

 

3.2. Methods 

 

3.2.1. Subjects 

 Subjects are similar to those described on section 2.2.1. The total number of 

subjects in this study was 17. 

 

3.2.2. Assay of intracranial self-stimulation 

 Intracranial self-stimulation electrode implantation and behavioral procedure are 

similar to those described on section 2.2.2. 

 Effects of opioid agonists with varying efficacies at the mu receptor. Three 

groups of rats were used in this experiment. In the first group, the high efficacy agonist 

methadone (0.032–5.6 mg/kg), the low efficacy against nalbuphine (0.032–10 mg/kg), 

naltrexone (0.1 mg/kg), and vehicle (saline) were tested (n=5). Morphine was tested 

first, and the results were similar to those reported previously (Altarifi and Negus, 2011), 

and are not discussed further. For each drug, except naltrexone, testing was conducted 

in two phases. During the first phase, the dose was manipulated from doses that 

produced no effect on ICSS to doses that either (a) significantly decreased ICSS or (b) 

were at least 10 times greater than the lowest dose to significantly facilitate ICSS. Test 

sessions consisted of three consecutive control components, followed immediately by 
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injection of the drug and then 30 min later by two consecutive test components. During 

the second phase, the time course of the dose producing peak facilitation of ICSS was 

determined. Test sessions consisted of three consecutive control components, followed 

immediately by injection of the drug and then by consecutive pairs of test components 

that began 10, 30, 100, 180, and 300 min after injection. Naltrexone was tested at a 

single dose (0.1 mg/kg) alone and as a 20-min pretreatment to 1.0 mg/kg methadone. 

One rat died before studies with naltrexone; thus, these studies were carried out with 

only four rats. The remaining two groups were used in experiments to examine the 

effects of the highest efficacy mu agonist methadone (0.032–3.2 mg/kg) and the lowest 

efficacy mu agonist nalbuphine (0.032–10 mg/kg) in separate groups of opioid-naive 

rats. 

In all experiments, sessions were typically conducted on Tuesdays and Fridays 

and were separated by at least 3 days. This intermittent-dosing regimen was intended 

to minimize the development of tolerance to drug effects on ICSS. Training sessions 

consisting of three components were conducted on Mondays, Wednesdays, Thursdays, 

and occasionally, on Saturdays. In some cases, data from these training sessions were 

used to assess ICSS performance 24 h after injection in the time-course studies. In 

these cases, data from the second and the third components of the training session 

were used as the ‘24-h time point’ for data analysis.  

 

3.2.3. Drugs 

 Methadone HCl and naltrexone HCl were provided by the National Institute on 

Drug Abuse Drug Supply Program (Bethesda, Maryland, USA). Nalbuphine HCl was 
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provided by Dr Kenner Rice (Chemical Biology Branch, National Institute on Drug 

Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, 

USA). All drugs were dissolved in saline and delivered subcutaneously in a volume of 

1ml/kg body weight. 

 

3.2.4. Data analysis 

The primary dependent variable was the reinforcement rate in stimulations/trial 

during each frequency trial. To normalize these raw data, reinforcement rates from each 

trial were converted into the percent maximum control rate (%MCR) for that rat on that 

day. The MCR was determined during the control components of each test session and 

was defined as the mean of the maximal rates observed in any frequency trial during 

the second and third control components. Thus, %MCR for each trial was calculated as 

(reinforcement rate during a frequency trial / MCR) x 100. Normalized data from the 

frequency trials of each pair of consecutive test components were then averaged across 

rats for display and for statistical analysis using two-way analysis of variance (ANOVA), 

with drug dose or time as one factor and ICSS frequency as the other factor. A 

significant ANOVA was followed by a Holm–Sidak post-hoc test, and the criterion for 

significance was set at P less than 0.05. 

To provide an additional summary of ICSS performance, the total number of 

stimulations per component was calculated as the average of the total stimulations 

delivered across all 10 frequency trials of each component. Test data were expressed 

as a percentage of the total stimulations earned during the ‘control’ components (% 

control stimulations). Thus, % control stimulations for each test were calculated as 
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(mean total stimulations during test components / mean total stimulations during control 

components) x 100. 

 

3.3. Results 

The control parameters of ICSS did not vary significantly during sequential 

testing with mu-opioid receptor ligands in a group of five rats, and the overall mean 

control parameters of all three groups are shown in Table 3.1. In the first group (i.e. has 

history of opioid administration), the high efficacy mu agonist methadone exerted dose-

dependent effects on ICSS, manifested as the exclusive facilitation of ICSS at relatively 

low to intermediate doses (0.32 - 1.0 mg/kg) and emergence of rate-decreasing effects 

at high doses (3.2 – 5.6 mg/kg; Fig. 3.1). The lower efficacy mu agonist nalbuphine also 

produced exclusive facilitation of ICSS at relatively low doses; however, in contrast to 

the higher efficacy mu agonist methadone, nalbuphine continued to produce exclusive 

facilitation of ICSS at doses up to 30-fold higher than the lowest doses to produce 

facilitation (Fig. 3.1). The opioid antagonist naltrexone did not alter ICSS at a dose 

sufficient to antagonize methadone-induced facilitation of ICSS (Fig. 3.1). Both drugs 

had the same potency to facilitate ICSS and figure 3.2 shows that both drugs produced 

peak facilitation of ICSS at the earliest time tested (10 min), and the speed of offset was 

faster for nalbuphine than methadone (100 vs. 180 min, respectively). Treatment with 

vehicle (saline) did not produce significant changes in 

ICSS at any time point. 

Figure 3.3 shows the effects of methadone and nalbuphine in two separate 

groups of opioid-naive rats. Relative to their effects in the initial group of opioid-
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experienced rats shown in Figure 3.1, methadone and nalbuphine produced weaker 

ICSS facilitation, and methadone produced more potent ICSS depression. For example, 

1.0mg/kg methadone facilitated low rates of ICSS maintained by low frequencies of 

brain stimulation in opioid-experienced rats (Fig. 3.1), but only depressed high rates of 

ICSS maintained by high frequencies of brain stimulation in opioid-naive rats (Fig. 3.3). 

Similarly, nalbuphine produced greater magnitudes of ICSS facilitation across a broader 

range of frequencies in opioid-experienced rats (Fig. 3.1) than in opioid-naive rats 

(facilitation only at 89Hz after 0.32 and 10 mg/kg; Fig. 3.3). Notably, nalbuphine did not 

significantly decrease ICSS at any dose in opioid-naive rats, but this absence of rate-

decreasing effects was not associated with enhanced expression of rate-increasing 

effects relative to methadone.  

 

3.4. Summary 

 Mu opioid receptor agonists such as morphine can either facilitate or depress 

ICSS, and previous opioid exposure can increase the expression of abuse-related ICSS 

facilitation (Chapter 2). This study tested the hypothesis that rate-decreasing effects 

require higher activation of mu receptors, and hence are more vulnerable to tolerance-

associated reductions in receptor density, than rate-increasing effects. I tested a high 

efficacy mu agonist (methadone) as well as a low efficacy mu agonist (nalbuphine). 

Each drug was tested twice in two separate groups of subjects: the first group was 

opioid experienced, and the other group was naïve. The hypothesis predicted that 

nalbuphine, would mimic the effects of morphine tolerance to produce the reduced 

expression of rate-decreasing effects and enhanced expression of rate-increasing 
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effects, while methadone would mimic the effects of morphine during acute 

administration. In contrast to this hypothesis, in opioid-naïve rats, a reduction in the 

efficacy of mu agonists was associated with a decreased expression of rate-decreasing 

effects, but not a tolerance-like enhancement in ICSS facilitation. These results suggest 

that history of opioid exposure influences effects of mu opioid receptor agonists on 

ICSS, and that mu agonist-induced facilitation and depression of ICSS may be 

mediated by distinct populations of mu receptors that respond differently to regimens of 

opioid exposure. 
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Figure 3.1. 
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Figure 3.1. Effects of methadone (a, b), nalbuphine (c, d), or “naltrexone + 

methadone” (e, f) on ICSS in opioid-experienced rats. The left column (panels a, c, 

and e) shows the ICSS frequency–rate curves. Horizontal axes: frequency of electrical 

brain stimulation in Hz (log scale). Vertical axes: ICSS rate expressed as percent 

maximum control rate (%MCR). Data obtained for some doses were excluded from the 

graph for clarity, but were included in statistical analyses. Filled symbols indicate the 

frequencies at which morphine ICSS rates were greater than those obtained during 

control components, as determined by the Holm–Sidak post-hoc test following a 

significant two-way ANOVA. The right column (panels b, d, and f) shows the total 

number of stimulations per test component, expressed as a percentage of the total 

control stimulations. Horizontal axes: dose. Vertical axes: percent control stimulations 

per test component. Upward and downward arrows indicate the presence and valence 

of the effects of test drug as determined by analyses of frequency–rate data. Thus, 

upward arrows indicate significant facilitation of ICSS at ≥1 frequency of the frequency–

rate curve, whereas downward arrows indicate significant depression of ICSS at ≥1 

frequency of the frequency–rate curve. ANOVA results were as follows: methadone: 

significant main effect of frequency [F(9,36) =71.2; P<0.001], significant main effect of 

dose [F(5,20)=3.8; P=0.014], and significant dose x frequency interaction 

[F(45,180)=3.8; P<0.001]; nalbuphine: significant main effect of frequency [F(9,36) 

=27.1; P<0.001], significant main effect of dose [F(5,20)=10.8; P<0.001], and significant 

dose x frequency interaction [F(45,180)=1.8; P=0.005]; naltrexone: significant main 

effect of frequency [F(9,27)=27.4; P<0.001], significant main effect of treatment 

[F(3,9)=7.1; P=0.009], and significant treatment x frequency interaction [F(27,81)=3.5; 

P<0.001]. ANOVA, analysis of variance; ICSS, intracranial self-stimulation; MCR, 

maximum control rate; NTX, naltrexone; Veh, vehicle 
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Figure 3.2. 

 

 

Figure 3.2. Time courses of mu-opioid receptor agonist effects on ICSS. Time 

course of the dose producing peak facilitation of ICSS for each drug as shown in Figs 

3.1 was determined. Horizontal axes: time elapsed after the injection of the test drug. 

Vertical axes: percent control stimulations per test component. ANOVA results were as 

follows: methadone: significant main effect of frequency [F(9,36) =92.8; P<0.001], 

significant main effect of time [F(6,24)=15.1; P<0.001], and significant time x frequency 

interaction [F(45,216)=2.2; P<0.001]; nalbuphine: significant main effect of frequency 

[F(9,27)=36.5; P<0.001], significant main effect of time [F(5,15)=7.8; P<0.001], and no 

significant time x frequency interaction [F(45,135)=1.2; P=0.181]; vehicle: significant 

main effect of frequency [F(9,27)=36.7; P<0.001], no significant main effect of time 

[F(6,18)=1.6; P=0.215], and no significant time x frequency interaction [F(54,162)=1.2; 

P=0.250]. For a description of symbols, please refer to Fig. 1. ANOVA, analysis of 

variance; ICSS, intracranial self-stimulation. 
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Figure 3.3 

 

Figure 3.3. Effects of the high-efficacy m agonist methadone (a, b) and the low-

efficacy nalbuphine (c, d) on ICSS in separate groups of opioid-naive rats. ANOVA 

results were as follows: methadone: significant main effect of frequency [F(9,45)=33.8; 

P<0.001], significant main effect of dose [F(5,25)=18.5; P<0.001], and significant dose x 

frequency interaction [F(45,225)=8.2; P<0.001]; nalbuphine: significant main effect of 

frequency [F(9,45)=30.0; P<0.001], no significant main effect of dose [F(6,30)=2.2; 

P=0.074], and significant dose x frequency interaction [F(54,270)=2.2; P<0.001]. For a 

description of axes and symbols, please refer to Fig. 3.1. ANOVA, analysis of variance; 

ICSS, intracranial self-stimulation; MCR, maximum control rate; Veh, vehicle. 
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Table 3.1. Control MCR and Total Stimulations obtained during experiments to 
determine the effects of mu-opioid receptor ligands.

  MCR ± SE Total Stimulations ± SE 

Mu ligands (Opioid experienced)
 

 54.8 ± 12.6 291.7 ± 82.6 

Methadone (naïve)
 

 57.1 ± 6.1 221.5 ± 48.4 

Nalbuphine (naïve)
 

 57.3  ± 10.6 207.8 ± 91.6 
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CHAPTER FOUR 

Abuse-related effects of mu opioid analgesics in an assay of intracranial self-

stimulation in rats: modulation by chronic morphine exposure 

(Behavioural Pharmacology; submitted) 

 

 

 

4.1. Introduction 

 The purpose of the present study was to extend my previous research on 

determinants of mu opioid agonists on ICSS in rats (Altarifi and Negus, 2011; Altarifi et 

al., 2012).  Specifically, my previous studies identified two general phenomena.  First, 

effects of mu agonists on ICSS in subjects with no prior history of opioid exposure were 

dependent on the efficacy of the opioid at mu receptors (with in vitro efficacy to 

stimulate GTPγS binding as the metric of efficacy; Selley et al., 1998).  High- to 

intermediate-efficacy mu agonists such as methadone and morphine produced biphasic 

effects that included both increases in low ICSS rates maintained by low brain 

stimulation frequencies and decreases in high ICSS rates maintained by high brain 

stimulation frequencies.  Conversely, lower efficacy mu agonists such as nalbuphine 

were less effective to produce both rate-increasing and rate-decreasing effects, and the 

opioid antagonist naltrexone did not alter ICSS at doses that blocked the effects of mu 

agonists (Chapter 3).  Second, with morphine, chronic treatment produced tolerance to 
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rate-decreasing effects and enhanced expression of rate-increasing effects, and 

prevailing evidence suggests that this differential tolerance reflects greater 

desensitization by chronic morphine of mu receptors mediating rate-decreasing than 

rate-increasing effects (Altarifi et al., 2012; Miller et al., submitted).   

The present study examined the interaction between these two phenomena by 

evaluating effects of chronic morphine exposure on changes in ICSS produced by four 

mu opioid receptor ligands that vary in efficacy at mu receptors: the high-efficacy mu 

agonist methadone, the intermediate efficacy mu agonist fentanyl, the low-efficacy mu 

agonist nalbuphine, and the mu antagonist naltrexone (Selley et al., 1998). I 

hypothesized that chronic morphine would produce the following efficacy-dependent 

effects: (1) tolerance to rate-decreasing effects for all agonists, with the potential for 

greater tolerance to lower efficacy agonists; (2) lesser or no tolerance to rate-increasing 

effects for all agonists, with the potential for greater tolerance to the lower efficacy 

agonists; and (3) dependence as indicated by the emergence of withdrawal-associated 

depression of ICSS by naltrexone and possibly also by nalbuphine. 

 

4.2. Methods 

 

4.2.1. Subjects 

 Subjects are similar to those described on section 2.2.1. 
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4.2.2. Assay of intracranial self-stimulation 

 Intracranial self-stimulation electrode implantation and behavioral procedure are 

similar to those described on section 2.2.2. 

Testing: Once training and habituation to saline injections were completed, “pre-

drug baseline” sessions were conducted over a period of 3 consecutive days to 

establish baseline ICSS performance before administration of any mu agonists. Each 

pre-drug baseline session consisted of 3 components as described in section 2.2.2. 

Rats were then distributed into 3 different groups.  Each group received a different test 

drug (methadone 0.32-5.6 mg/kg; fentanyl 0.003-0.1 mg/kg; or nalbuphine 0.1-10 

mg/kg). Testing in each group proceeded in three phases to evaluate test drug effects 

before chronic morphine (phase 1), during daily treatment with 3.2 mg/kg/day morphine 

(phase 2) and during treatment with 18 mg/kg/day morphine (phase 3). In addition to 

being tested with their designated test mu agonist during each phase, all rats were also 

tested with 0.1 mg/kg naltrexone after mu agonist testing during phase 3. Rats in the 

methadone and nalbuphine groups were also tested again 3 weeks after termination of 

repeated morphine (phase 4). Table 4.1 summarizes the sequence of treatments in all 

groups. 

The first phase started immediately after the third pre-drug baseline session and 

lasted for 15-20 days. Daily ICSS sessions in this and all subsequent phases consisted 

of (a) three consecutive daily-baseline components, (b) a 30 min time out, with 

administration of saline or drug at the beginning of the time out, and (c) two more test 

components. Thus, ICSS was assessed twice each day: once during the daily-baseline 

components before that day’s injection of saline or drug (and approximately 23 hr after 
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the previous day’s injection), and once during the test components that began 30 min 

after that day’s injection. After the last component, subjects were removed from the test 

chamber and returned to their home cages. Test sessions involving administration of 

active doses of the test drug were separated by at least three days in the fentanyl 

group, which was the first group studied. A modification in experimental design was 

introduced for the later methadone and nalbuphine groups (see below for rationale), and 

in these groups, test sessions with active doses were separated by at least two days. 

For all groups, saline was administered instead of test drug on intervening days.  ICSS 

sessions were sometimes omitted on weekends.  

The second phase started with a 7-day maintenance period, during which 3.2 

mg/kg/day morphine was administered during the time out of each daily ICSS session. 

On day 8, test sessions were resumed, and test drug effects were redetermined using 

the same dose order and intervals as the first phase.  In addition, the fentanyl group 

was also tested with an additional higher dose in phase two after testing with the 

original doses was completed. On days that subjects did not receive test drug, they 

received 3.2 mg/kg morphine. This morphine injection was usually administered during 

the time out of an ICSS session as described above; however, ICSS sessions were 

occasionally omitted during the weekends, and on these days, the morphine injection 

was administered without ICSS. As in phase 1, test sessions for fentanyl were 

separated by at least three days, so that each test session was preceded by at least two 

days of treatment with the chronic morphine dose.  In the methadone and nalbuphine 

groups, an alternative design was implemented to minimize protracted opioid withdrawal 

on days when saline or low test-drug doses were examined.  Thus, when subjects were 
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tested with saline vehicle or with low doses of methadone (0.32 mg/kg) or nalbuphine 

(0.1-0.32 mg/kg), they also received a supplemental dose of 3.2 mg/kg morphine after 

the final component on that day, before returning to their home cages. Supplemental 

doses were not administered after higher doses of methadone or nalbuphine to 

minimize the potential for opioid overdose. Phase two lasted 20-25 days. 

The third phase began with a gradual increase in the morphine dose 

administered during the time out of consecutive daily ICSS sessions. Typically, subjects 

received 5.6 mg/kg/day morphine for 2 days, followed by 10 mg/kg/day morphine for 2-4 

days, followed by the terminal dose of 18 mg/kg/day for the remainder of the third 

phase. The rate of dose escalation was individually determined in each rat to assure 

expression of ICSS at a given dose before proceeding to a higher dose. Once the 

terminal dose of 18 mg/kg/day morphine was achieved, it was maintained for seven 

days. Subsequently, test sessions were resumed, and test drug effects were 

redetermined using the same dose order and intervals as in the second phase.  In 

addition, the methadone group was also tested with an additional higher dose in phase 

3 after testing with the original doses was completed.  Also, all subjects were tested with 

0.1 mg/kg naltrexone (NLTX) after testing with the designated mu agonist was 

completed.  This naltrexone dose was selected as a dose that did not alter ICSS in non-

dependent rats but that blocked methadone-induced facilitation of ICSS in a previous 

study (Altarifi et al., 2012).  Subjects in this phase received 18 mg/kg/day morphine on 

the days that they did not receive test drug, and 18 mg/kg morphine was also 

administered at the end of test sessions during which saline vehicle or low methadone 
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(0.32-1.0 mg/kg), or nalbuphine (0.1-3.2 mg/kg) doses were tested. Phase three lasted 

between 20-25 days. 

At the end of the third phase, daily morphine injections were terminated, but daily 

ICSS sessions continued for at least three days.  No further experiments were 

conducted in the fentanyl group.  For the methadone and nalbuphine groups, ICSS 

sessions and drug treatments were suspended for two weeks.  Training was then 

resumed for three days, after which an extra phase (phase four) was conducted in these 

subjects identical to phase 1. 

 

4.2.3. Drugs 

 Morphine sulfate, methadone HCl, naltrexone HCl and fentanyl HCl were 

provided by the National Institute on Drug Abuse Drug Supply Program (Bethesda, MD). 

Nalbuphine HCl was provided by Dr. Kenner Rice (Chemical Biology Branch, National 

Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, 

Bethesda, MD). All drugs were dissolved in saline and delivered subcutaneously in a 

volume of 1 ml/kg body weight. 

 

4.2.4. Data Analysis 

The primary dependent variable was the reinforcement rate in stimulations/trial 

during each frequency trial. To normalize these raw data, reinforcement rates from each 

trial in each rat were converted to Percent Maximum Control Rate (%MCR) for that rat. 

The maximum control rate was determined for each rat during the pre-drug baseline 

sessions at the beginning of the experiment.  The first component from these sessions 
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(and from all other sessions) was considered to be an acclimation component, and data 

were discarded. The maximum control rate was defined as the mean of the maximal 

rates observed during any frequency trial of the second and third components of the 

three pre-drug baseline sessions (six total pre-drug baseline components). 

Subsequently, %MCR for each trial was calculated as (Reinforcement Rate During a 

Frequency Trial ÷ Maximum Control Rate) × 100.  Graphs show mean frequency-rate 

curves, with brain stimulation frequency on the abscissa, and ICSS rate expressed as 

%MCR on the ordinate. 

Frequency-rate curves from test sessions during each phase of the study were 

submitted for analysis.  As noted above, these frequency-rate curves were assessed 

twice on each test day: once during daily baseline components before that day’s 

injection (and approximately 23 hr after the previous day’s injection), and again during 

test components that began 30 min after that day’s injection.  Daily baseline data and 

test data from test sessions were analyzed separately.  The daily baseline data 

provided information on changes in baseline ICSS produced by the chronic treatment 

(saline, 3.2 mg/kg/day morphine, or 18 mg/kg/day morphine).  More specifically, 

because daily baseline components were conducted approximately 23 hr after the most 

recent injection of the chronic treatment, they provided data on changes in ICSS 

produced by 23 hr withdrawal from that treatment. Because rats in all three test drug 

groups received the same progression of chronic morphine treatments during sequential 

phases of the study, daily baseline data from test sessions within each phase were 

averaged across all rats to yield mean baseline ICSS data during chronic treatment with 

saline, 3.2 mg/kg/day morphine and 18/mg/kg/day morphine.  These mean baseline 



www.manaraa.com

   

 - 69 - 

data during each phase were compared to the pre-drug baseline data using two-way 

ANOVA, with phase of chronic treatment as one factor and ICSS frequency as the other 

factor. A significant ANOVA was followed by a Holm-Sidak post hoc test, and the 

criterion for significance was set at p < 0.05.  To facilitate within-subject data analysis, 

data were included only for those rats that completed all three phases of chronic 

morphine treatment (N=15, 5 from each group).           

Test data from each test session were analyzed to assess dose effects of each 

test drug (methadone, fentanyl, nalbuphine) on ICSS frequency-rate curves during each 

phase of chronic morphine treatment.  Within each phase, ICSS test data for a given 

dose were averaged across rats and compared by two-way ANOVA, with drug dose as 

one factor and ICSS frequency as the other factor.  A similar approach was used to 

compare effects of saline and 0.1 mg/kg naltrexone treatment during phase 3. A 

significant ANOVA was followed by a Holm-Sidak post hoc test, and the criterion for 

significance was set at p < 0.05.  Data were included for all rats that completed a given 

phase.  

To provide an additional summary measure of baseline and test ICSS 

performance, the total number of stimulations per component was calculated as the 

average of the total stimulations delivered across all 10 frequency trials of each 

component. Baseline and test data were expressed as a percentage of the total 

stimulations per component earned during the “pre-drug baseline” components (% 

Control). Thus, % Control was calculated as (Mean Total Stimulations During Daily 

Baseline or Test Components ÷ Mean Total Stimulations During Pre-Drug Baseline 

Components) × 100. 
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4.3. Results 

Baseline ICSS before and during chronic morphine.  During pre-drug 

baseline sessions, the average maximum control rate (MCR) for all rats in the study was 

57.2 ± 9.8 stimulations per trial, and the average control number of total stimulations 

delivered across all frequencies was 286.7±70.7. Table 4.2 shows the MCR and control 

number of total stimulations for each group of rats. Figure 4.1 shows mean frequency-

rate ICSS curves before treatment and during phases 1-3 of chronic morphine 

treatment. During baseline (i.e. before any drug administration), little responding was 

maintained by the lower frequencies of stimulation (56-79 Hz), and ICSS increased at 

the intermediate and higher frequencies (89-158 Hz). Chronic treatment with vehicle 

(phase 1) and 3.2 mg/kg morphine (phase 2) did not significantly alter ICSS. During 

phase 3, treatment with repeated 18 mg/kg/day morphine produced a decrease in ICSS 

relative to the pre-drug baseline (significant at 100-126 Hz).  ICSS partially recovered 

within three days after termination of chronic morphine, although ICSS rates were still 

significantly depressed at one frequency (112 Hz). 

Effects of methadone on ICSS before and during chronic morphine. Figure 

4.2 shows the effect of methadone on ICSS during phases 1-3. During phase 1, 

methadone failed to facilitate ICSS at any brain stimulation frequency.  Rather, 

methadone dose-dependently decreased ICSS maintained by high frequencies of brain 

stimulation, with significant depression at 126-158 Hz after 1.0 mg/kg methadone and at 

100-158 Hz after 3.2 mg/kg methadone (figure 4.2 a,b). Repeated treatment with 3.2 

mg/kg/day morphine during phase 2 reduced expression of methadone’s rate-

decreasing effects and increased expression of its rate-increasing effects.  Thus, 1.0 
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mg/kg methadone no longer depressed ICSS at any frequency of brain stimulation, but 

rather produced facilitation of ICSS at intermediate frequencies (71-100 Hz). Similarly, 

3.2 mg/kgdepressed ICSS across a narrower range of high frequencies during phase 2 

(141-158 Hz), and it increased ICSS at intermediate frequencies (71-79 Hz). One of 

eight subjects died before completion of this phase, so only seven rats completed 

testing with all methadone doses in phase 2 and advanced to phase 3. During phase 3, 

1.0 and 3.2 mg/kg methadone produced exclusive rate-increasing effects at the 

intermediate frequencies 89-100 Hz and 63-89 Hz, respectively. A higher dose of 5.6 

mg/kg methadone was introduced during this phase, and it produced biphasic effects 

similar to the effects of 3.2 mg/kg during phase 2 (figure 4.2 e,f). Two subjects died 

during high-dose morphine treatment in phase 3, so only 5 rats completed testing with 

all methadone doses in this phase. 

Effects of fentanyl on ICSS before and during chronic morphine. Figure 4.3 

shows the effect of fentanyl on ICSS during phases 1-3. During phase 1, a low dose of 

0.003 mg/kg fentanyl facilitated ICSS at one frequency (89 Hz), but only rate-decreasing 

effects were produced by higher fentanyl doses of 0.01 mg/kg (158 Hz) and 0.03 mg/kg 

(100-158) (figure 4.3 a,b). A lower fentanyl dose of 0.001 mg/kg was also tested, and it 

did not produce any change in ICSS (data not shown). During phase 2, 0.003 mg/kg 

fentanyl did not produce any significant change in ICSS compared to vehicle. However, 

effects of 0.01 and 0.03 mg/kg fentanyl changed from exclusive depression of ICSS at 

high frequencies during phase 1 to exclusive facilitation of ICSS at intermediate 

frequencies during phase 2. Thus, fentanyl at 0.01 and 0.03 mg/kg produced exclusive 

facilitation of ICSS at 89-100 Hz and 71-100 Hz, respectively (figure 4.3 c,d). A higher 
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fentanyl dose of 0.1 mg/kg was also introduced during phase 2, and this dose nearly 

eliminated responding and significantly reduced ICSS at the highest five frequencies 

(100-158 Hz).  One of six rats died during phase 2, so only five rats completed testing 

with all fentanyl doses and advanced to phase 3. During the third phase, neither 0.003 

nor 0.01 mg/kg morphine altered ICSS at any frequency. However, 0.03 mg/kg fentanyl 

still facilitated ICSS at intermediate frequencies (71-100 Hz), and 0.1 mg/kg fentanyl still 

depressed ICSS at high frequencies (112-158 Hz) (figure 3 e,f).  

Effects of nalbuphine on ICSS before and during chronic morphine. Figure 

4.4 shows the effects of nalbuphine on ICSS during phases 1-3. During phase 1, 

nalbuphine primarily facilitated ICSS, although these effects were not monotonically 

related to dose.  Thus, exclusive facilitation of ICSS was produced by nalbuphine doses 

of 0.1 (79 Hz), 0.32 (71-89 Hz) and 3.2 mg/kg (71-89 Hz), and the highest dose of 10 

mg/kg produced biphasic effects (facilitation at 63-79 Hz and depression at 158 Hz). 

Conversely, 1.0 mg/kg nalbuphine (the first dose tested) did not facilitate ICSS and 

significantly depressed ICSS at the highest frequency (158 Hz). Repeated treatment 

with 3.2 mg/kg/day morphine during phase 2 eliminated expression of nalbuphine’s rate-

decreasing effects and enhanced the dose-dependence and magnitude of nalbuphine’s 

rate-increasing effects. For example, 10 mg/kg nalbuphine facilitated ICSS at 

frequencies of 63-100 Hz and did not depress ICSS at any frequency (figure 4.4 c,d). 

During phase 3, nalbuphine produced similar effects consisting of exclusive ICSS 

facilitation across all nalbuphine doses. In addition, diarrhea was observed in all 

subjects after administration of 0.32-3.2 mg/kg nalbuphine (data not shown). One of six 
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rats died during phase 3, so only five rats completed testing with all nalbuphine doses in 

this phase. 

Effect of naltrexone on ICSS during chronic 18 mg/kg/day morphine. At the 

end of phase 3 and before the termination of the daily morphine treatment, 0.1 mg/kg 

naltrexone was tested and results are shown in figure 4.5. Rate depression was the 

predominant effect of naltrexone compared to vehicle, and it depressed ICSS at 

frequencies of 112 and 126 Hz. Diarrhea was observed in all subjects after 

administration of this dose of naltrexone. 

Effect of methadone and nalbuphine after 2 weeks of morphine abstinence.  

The effects of methadone (N=5) and nalbuphine (N=5) were redetermined beginning 

after 3 weeks of morphine abstinence. As noted above, daily baseline ICSS recovered 

toward pre-drug baseline levels within three days after termination of morphine 

treatment (Figure 4.1), and daily baseline ICSS persisted at pre-drug baseline levels 

throughout testing during abstinence. For example, for the 10 rats that completed 

abstinence testing, the pre-drug control ± SEM number of stimulations per component 

was 297.8 ± 83.6, and the mean number of stimulations per component during 

abstinence testing was 293.0 ± 163.0. Figure 4.6 shows that methadone and 

nalbuphine effects during abstinence testing were generally similar to their effects 

during phase 2 testing. Thus, 0.32 mg/kg methadone did not significantly alter ICSS, 1.0 

mg/kg methadone facilitated ICSS at intermediate frequencies (63-100 Hz), and 3.2 

mg/kg methadone tended to produce biphasic effects, with facilitation at 71-79 Hz and a 

non-significant decrease in mean ICSS rates at high frequencies (126-158 Hz) (figure 

4.6 a,b). Similarly, nalbuphine produced a dose-dependent facilitation of ICSS, although 
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effects of the lowest dose of 0.1 mg/kg nalbuphine did not achieve statistical 

significance (figure 4.6 c,d). In addition, diarrhea was not detected after any nalbuphine 

dose during this phase (data not shown). 

 

4.4. Summary 

 This study examined the impact of graded morphine exposure on changes in 

ICSS produced by agonists with high efficacy (methadone), intermediate efficacy 

(fentanyl) or low efficacy (nalbuphine) at mu opioid receptors.  There were three main 

findings.  First, in agreement with previous results (Altarifi et al., 2012) the higher 

efficacy mu agonists methadone and fentanyl produced primarily rate-decreasing 

effects in opioid-naïve subjects, whereas the low-efficacy mu agonist nalbuphine 

produced primarily rate-increasing effects that did not vary systematically as a function 

of dose.  Second, repeated morphine produced cross tolerance to the rate-decreasing 

effects and enhanced expression of the rate-increasing effects of all three mu agonists.  

Lastly, the daily morphine dosing regimen used here produced withdrawal-associated 

decreases in baseline ICSS determined approximately 23 hr after morphine.  Repeated 

morphine also enhanced rate-decreasing effects of the antagonist naltrexone. However, 

this evidence of opioid dependence and withdrawal was not sufficient to account for 

enhanced expression of mu agonist-induced rate-increasing effects. Taken together, 

these results provide further evidence to suggest that repeated opioid exposure 

increases the degree to which mu agonists produce abuse-related facilitation of ICSS.
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Figure 4.1 
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Figure 4.1. ICSS performance before, during and after chronic morphine 

treatment. ICSS curves were analyzed during pre-drug baseline sessions (grey dashed 

line), daily baseline components from test sessions during phases 1-3, and day 3 after 

termination of chronic morphine treatment (WD3: Withdrawal Day 3) for subjects that 

finished all three phases. The left panel shows ICSS frequency-rate curves. Horizontal 

axes: frequency of electrical brain stimulation in hertz (log scale). Vertical axes: ICSS 

rate expressed as percent maximum control rate (%MCR). Filled symbols indicate 

frequencies at which ICSS rates were lower than those observed during the pre-drug 

baseline components, as determined by the Holm-Sidak post-hoc test following a 

significant two-way ANOVA. Summary data in the right panel show the total number of 

stimulations per test component expressed as a percentage of total pre-drug baseline 

control stimulations. Horizontal axes: phase of the treatment. Vertical axes: percent 

control stimulations per test component. Upward and/or downward arrows indicate the 

presence and valence of significant differences from pre-drug baseline as determined 

by analyses of frequency-rate data in the left panel. Thus, upward arrows indicate 

significant facilitation of ICSS at ≥1 frequency of the frequency-rate curve, whereas 

downward arrows indicate significant depression of ICSS at ≥1 frequency of the 

frequency-rate curve. ANOVA results were as follows: Significant main effect of 

frequency [F(9,126)=158.1; P<0.001], significant main effect of phase [F(3,42)=11.0; 

P<0.001], and significant phase X frequency interaction [F(27,378)=4.9; P<0.001]. All 

points show mean ± SEM for 15 rats.
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Figure 4.2 
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Figure 4.2. Effects of methadone on ICSS before and during chronic morphine 

treatment. Methadone doses (or vehicle) were administered during treatment with 

repeated vehicle (phase 1; a,b), repeated 3.2 mg/kg/day morphine (phase 2; c,d), and 

repeated 18 mg/kg/day morphine (phase 3; e,f). Left panels show full frequency-rate 

curves.  Left abscissae: frequency of electrical brain stimulation in hertz (log scale). Left 

ordinates: ICSS rate expressed as percent maximum control rate (%MCR). Filled 

symbols indicate frequencies at which ICSS rates after methadone were different than 

those observed after vehicle, as determined by the Holm-Sidak post-hoc test following a 

significant two-way ANOVA. Summary data in the right panels show the total number of 

stimulations per test component expressed as a percentage of total pre-drug baseline 

control stimulations. Abscissae: dose of methadone in mg/kg. Ordinates: percent control 

stimulations per test component. Upward and/or downward arrows indicate the 

presence and valence of significant differences from vehicle treatment as determined by 

analyses of frequency-rate data in the left panels. All points show mean ± SEM for 5-8 

rats. For description of axes and symbols, please refer to figure 1.  ANOVA results were 

as follows: Chronic vehicle: Significant main effect of frequency [F(9,63)=31.4; 

P<0.001], significant main effect of dose [F(3,21)=9.9; P<0.001], and significant dose X 

frequency interaction [F(27,189)=9.1; P<0.001]. Repeated 3.2 mg/kg/day morphine: 

Significant main effect of frequency [F(9,54)=67.2; P<0.001], no significant main effect 

of dose [F(3,18)=2.6; P=0.086], and significant dose X frequency interaction 

[F(27,162)=11.2; P<0.001]. Repeated 18 mg/kg/day morphine: Significant main effect of 

frequency [F(9,36)=91.5; P<0.001], no significant main effect of dose [F(4,16)=1.2; 

P=0.365], and significant dose X frequency interaction [F(36,144)=10.4; P<0.001].
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Figure 4.3 
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Figure 4.3. Effects of fentanyl on ICSS before and during chronic morphine 

treatment. Fentanyl doses (or vehicle) were administered during treatment with 

repeated vehicle (phase 1; a,b), repeated 3.2 mg/kg/day morphine (phase 2; c,d), and 

repeated 18 mg/kg/day morphine (phase 3; e,f). All points show mean ± SEM for 5-6 

rats. For description of axes and symbols, please refer to figure 2.  ANOVA results were 

as follows: Chronic vehicle: Significant main effect of frequency [F(9,45)=93.2; 

P<0.001], significant main effect of dose [F(3,15)=4.3; P=0.022], and significant dose X 

frequency interaction [F(27,135)=5.6; P<0.001]. Repeated 3.2 mg/kg/day morphine: 

Significant main effect of frequency [F(9,45)=30.6; P<0.001], significant main effect of 

dose [F(4,20)=15.7; P<0.001], and significant dose X frequency interaction 

[F(36,180)=10.0; P<0.001]. Repeated 18 mg/kg/day morphine: Significant main effect of 

frequency [F(9,36)=37.7; P<0.001], significant main effect of dose [F(4,16)=12.1; 

P<0.001], and significant dose X frequency interaction [F(36,144)=5.3; P<0.001].
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Figure 4.4 
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Figure 4.4. Effects of nalbuphine on ICSS before and during chronic morphine 

treatment. Nalbuphine doses (or vehicle) were administered during treatment with 

repeated vehicle (phase 1; a,b), repeated 3.2 mg/kg/day morphine (phase 2; c,d), and 

repeated 18 mg/kg/day morphine (phase 3; e,f). All points show mean ± SEM for 5-6 

rats. For description of axes and symbols, please refer to figure 2.  ANOVA results were 

as follows: Chronic vehicle: Significant main effect of frequency [F(9,45)=63.0; 

P<0.001], significant main effect of dose [F(5,25)=6.6; P<0.001], and significant dose X 

frequency interaction [F(45,225)=3.0; P<0.001]. Repeated 3.2 mg/kg/day morphine: 

Significant main effect of frequency [F(9,45)=18.9; P<0.001], significant main effect of 

dose [F(5,25)=14.9; P<0.001], and significant dose X frequency interaction 

[F(45,225)=2.9; P<0.001]. Repeated 18 mg/kg/day morphine: Significant main effect of 

frequency [F(9,36)=13.2; P<0.001], significant main effect of dose [F(5,20)=9.0; 

P<0.001], but no significant dose X frequency interaction [F(45,180)=1.0; P=0.532]. 
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Figure 4.5 

 

 

 

 

 

 

 

 

 

Figure 4.5. Effects of 0.1 mg/kg naltrexone (NLTX) on ICSS during chronic 18 

mg/kg/day morphine treatment (phase 3). All points show mean ± SEM for 15 rats 

from all groups. For description of axes and symbols, please refer to figure 2.  There 

was significant main effect of frequency [F(9,126)=74.0; P<0.001], significant main 

effect of treatment [F(1,14)=6.7; P=0.021], and significant dose X frequency interaction 

[F(9,126)=3.7; P<0.001]. 
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Figure 4.6 

Figure 4.6. Effects of methadone and nalbuphine on ICSS after termination of 

repeated morphine treatment. Methadone (a,b) and nalbuphine (c,d) were tested after 

3 weeks of morphine abstinence. All points show mean ± SEM for 5 rats. For 

description of axes and symbols, please refer to figure 2.  ANOVA results were as 

follows: Methadone: Significant main effect of frequency [F(9,36)=22.6; P<0.001], no 

significant main effect of dose [F(3,12)=2.6; P=0.097], and significant dose X frequency 

interaction [F(27,108)=5.7; P<0.001]. Nalbuphine: Significant main effect of frequency 

[F(9,36)=7.8; P<0.001], significant main effect of dose [F(5,20)=11.3; P<0.001], and 

significant dose X frequency interaction [F(45,180)=2.0; P<0.001].
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Table 4.1. Summary table showing the experimental design, drug doses, and 

number of subjects used in each group 

Group Test Drug Variable Phase I  Phase II  Phase III Phase IV 

1 
Methadone 

(n = 5-8) 

Chronic 

treatment 
Vehicle 

3.2 mg/kg/day 

morphine 

18 mg/kg/day 

morphine 
Vehicle 

Doses (mg/kg) 0.032-3.2 0.032-3.2 0.032-5.6 0.032-3.2 

2  
Fentanyl  

(n = 5-6) 

Chronic 

treatment 
Vehicle 

3.2 mg/kg/day 

morphine 

18 mg/kg/day 

morphine 
N/A 

a
 

Doses (mg/kg) 0.001-0.03 0.001-0.1 0.001-0.1 N/A 
a
 

3 
Nalbuphine 

(n = 5-6) 

Chronic 

treatment 
Vehicle 

3.2 mg/kg/day 

morphine 

18 mg/kg/day 

morphine 
Vehicle 

Doses 0.1-10 0.1-10 0.1-10 0.1-10 

 

a 
N/A=not applicable.  Subjects were euthanized at the end of phase III 
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Table 4.2. Maximum control rates (MCR) and total stimulations obtained during 

pre-drug Baseline 

 

Group (Drug) MCR (±SEM) Control Total Stimulations (±SEM) 

1 (Methadone) 56.5 (±6.8) 282.5 (±61.9) 

2 (Fentanyl) 55.8 (±11.1) 263.5 (±52.6) 

3 (Nalbuphine) 59.7 (±12.7) 315.5 (±96.0) 



www.manaraa.com

   

 - 87 - 

 

 

 

CHAPTER FIVE 

Effects of mu opioid receptor agonists in assays 

of acute pain-stimulated and pain-depressed behavior in rats 

 

 

 

5.1. Introduction 

 Pain-related behaviors can be assigned to two general categories that we have 

called “pain-stimulated behaviors” and “pain-depressed behaviors” (Negus et al., 2010). 

Most assays that are used to measure pain in laboratory animals fall under pain-

stimulated behaviors, such as tail-withdrawal, paw withdrawal, and stretching. Although 

these types of assays helped in identifying pain neurobiology, identifying possible 

targets for future drug analgesics, and studying the pharmacology of current analgesics, 

they failed to generate more efficient and safer analgesics than those currently used in 

pain medicine, such as opioids and NSAIDs. One reason behind this discrepancy is that 

animal ‘pain’ models do not simulate multidimensional clinical pain conditions (Mao, 

2012). On the other hand, pain-depressed behaviors may be more clinically relevant, 

but they have received little attention in preclinical research. Thus, preclinical assays of 

pain-depressed behaviors, such as feeding and locomotion, may be a better target to 

enhance pain medicine.  
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 It has been shown previously that intraperitoneal injection of dilute lactic acid 

produced depression in ICSS and pretreatment with morphine was able to block the 

acid effect (Pereira Do Carmo et al., 2009). Depression of ICSS can be classified as an 

example of pain-depressed behaviors, and the effect of morphine may indicate the 

sensitivity of this assay to clinically used analgesics. In the current study, lactic acid was 

used as the noxious stimulus because hydrogen ions can directly activate acid-sensitive 

ion channels which have a particular relevance in the development and maintenance of 

inflammatory pain (Karczewski et al., 2010), and we wanted to expand these findings by 

testing the pharmacology of mu opioid agonists with and without noxious stimulus in 

ICSS in comparison to an assay of acid-stimulated stretching. We tested a variety of 

clinically used opioid agonists that have different efficacy at the mu receptor. Also, 

selected agonists were tested after noxious stimulus intensity manipulation. 

 

5.2. Methods 

 

5.2.1. Subjects 

 Subjects are similar to those described on section 2.2.1. 

 

5.2.2. Assay of intracranial self-stimulation 

 Intracranial self-stimulation electrode implantation and behavioral procedure are 

similar to those described on section 2.2.2. 

Testing: ICSS testing was conducted in two phases.  First, the effects of 

methadone (0.032-1.0 mg/kg), fentanyl (0.0032-0.032 mg/kg), morphine (0.1-3.2 
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mg/kg), hydrocodone (0.1-3.2 mg/kg), buprenorphine (0.001-0.032 mg/kg) and 

nalbuphine (0.1-1.0 mg/kg) were examined as pretreatments to 1.8% lactic acid or acid 

vehicle (sterile water).  Each drug was tested in a separate group of 5-6 rats that were 

opioid-naïve at the start of the study.  ICSS test sessions consisted of 5 sequential 

components with a 30 min time out between the first three and last two components. 

The first component of each test session was considered to be an acclimation 

component, and data were discarded. Data from the second and third ‘‘baseline’’ 

components were used to calculate baseline parameters of frequency-rate curves for 

that session (see Data Analysis). Following these baseline components and during the 

time out, test drug or its vehicle was administered subcutaneously as a 30-minute 

pretreatment to 1.8% lactic acid or its vehicle (IP in a volume of 1.0 ml/kg). Two 

sequential test components were conducted immediately after the second injection. 

Test sessions were conducted on Tuesdays and Fridays, with one test day each week 

devoted to evaluation of one dose of one opioid as a pretreatment to lactic acid, and the 

other day devoted to evaluation of the same dose of the same opioid as a pretreatment 

to acid vehicle. For all drugs, doses were delivered in a mixed order across rats. Three-

component training sessions were conducted during other weekdays.  

The second phase of the study was designed to compare effects of methadone 

and nalbuphine on depression of ICSS produced by a higher intensity noxious stimulus.  

First, 13 naïve rats were treated at weekly intervals with subcutaneous saline as a 30-

minute pretreatment to vehicle, 0.56%, 1.8%, or 5.6% lactic acid (in order of testing; IP 

in a volume of 1.0 ml/kg).  Test sessions began with three baseline components 

followed first by delivery of injections during a 30 min time out and then by two 
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consecutive test components. Subsequently, the rats were divided into two groups, and 

the effect of 5.6% lactic acid on ICSS were redetermined after pretreatment with 

methadone (0.1 and 1.0 mg/kg; N=6) or nalbuphine (1.0 or 10 mg/kg; N=7).  For each 

drug, the lowest dose was the dose that produced peak antinociception against 1.8% 

lactic acid in the first phase of the study, and this was the first dose tested.  Rats were 

then tested a week later with a 10-fold higher dose of each drug. 

Data Analysis. The primary dependent variable was the reinforcement rate in 

stimulations/trial during each frequency trial. To normalize these raw data, 

reinforcement rates from each trial were converted to Percent Maximum Control Rate 

(%MCR) for that rat on that day. The maximum control rate was determined during 

control components of each test session and was defined as the mean of the maximal 

rates observed in any frequency trial during the second and third control components. 

Thus, %MCR for each trial was calculated as (Reinforcement Rate During a Frequency 

Trial ÷ Maximum Control Rate) × 100. Normalized data from the frequency trials of each 

pair of consecutive test components were then averaged across rats for display and for 

statistical analysis using two-way ANOVA, with drug dose or time as one factor and 

ICSS frequency as the other factor. A significant ANOVA was followed by a Holm-Sidak 

post hoc test, and the criterion for significance was set at p < 0.05. 

To provide an additional summary of ICSS performance, the total number of 

stimulations obtained at all frequencies was summed for each test component and 

averaged across the two test components of each experimental session in each rat. 

Data for total stimulations per component were then expressed as a percentage of the 

baseline number of stimulations per component in each rat and averaged across rats.  
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These data were also used to quantify blockade of acid-induced depression of ICSS.  

Specifically, "percent acid blockade" was quantified using the equation [(test-

acid)/(baseline-acid)]*100, where "test" was the total number of ICSS stimulations after 

treatment with drug + acid, "acid" was the total number of stimulations after acid alone, 

and "baseline" was the total number of stimulations in the absence drug or acid.  For all 

drugs producing greater than 50% acid blockade, linear regression was used to 

calculate an ED50 and 95% confidence limits, with ED50 defined as the effective dose 

producing 50% acid blockade.  For drugs that produced inverted U-shaped dose-effect 

curves (methadone, fentanyl, morphine), the ED50 value was determined from the 

ascending limb of the dose-effect curve.  ED50 values were considered to be 

significantly different if 95% confidence limits did not overlap. 

 

5.2.3. Assay of lactic acid-stimulated stretching 

Behavioral Procedure. Test sessions were conducted once per week. Test 

drugs were administered subcutaneously 30 minutes prior to treatment with 1.8% lactic 

acid (IP in a volume of 1.0 ml/kg). Immediately after acid injection, rats were placed into 

acrylic test chambers (31.0 X 20.1 X 20.0 cm) for 30-minute observation periods. A 

stretch was operationally defined as a contraction of the abdomen followed by extension 

of the hind limbs, and the number of stretches during the observation period was 

counted. Effects of methadone (0.1-1.0 mg/kg), fentanyl (0.0032-0.032 mg/kg), 

morphine (0.1-1.0 mg/kg), hydrocodone (0.1-1.0 mg/kg), buprenorphine (0.00032-0.01 

mg/kg) and nalbuphine (0.1-1.0 mg/kg) were examined in separate groups of 5-8 rats. 

Drug doses were tested in a mixed order across rats. 
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Similar to ICSS experiments, a separate group of naïve rats (n=7) was treated 

with subcutaneous saline as a 30-minute pretreatment to vehicle (water), 0.56%, 1.8%, 

or 5.6% lactic acid (in order of testing; IP in a volume of 1.0 ml/kg). After acid 

administration, rats were observed for 30 min, and the total number of stretches was 

counted as described previously. 

Data Analysis. The primary dependent variable was the number of stretches 

counted during each observation period in each rat. To normalize these data, raw 

counts were converted to percent vehicle control using the equation (drug/vehicle)X100, 

where "drug" was the number of writhes observed after drug + acid, and "vehicle" was 

the number of writhes after drug vehicle + acid.  These data were then averaged across 

rats. For all drugs producing greater than 50% reduction in stretching, linear regression 

was used to calculate an ED50 and 95% confidence limits, with ED50 defined as the 

effective dose producing 50% control writhing. 

To evaluate significance during tests with different acid concentrations, data were 

averaged across rats, and one way-ANOVA was used for statistical analysis. A 

significant ANOVA was followed by a Dunnett post-hoc test with P < 0.05. 

 

5.2.4. Drugs 

Methadone HCl, fentanyl HCl, morphine sulfate, hydrocodone bitartrate and 

buprenorphine HCl were provided by the National Institute on Drug Abuse Drug Supply 

Program (Bethesda, MD). Nalbuphine HCl was provided by Dr. Kenner Rice (Chemical 

Biology Branch, National Institute on Drug Abuse and National Institute on Alcohol 

Abuse and Alcoholism, Bethesda, MD). All opioids were dissolved in saline and 
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delivered SC in a volume of 1 ml/kg body weight.  Lactic acid was purchased from 

Sigma Chemical Co. (St. Louis, MO), diluted in sterile water, and administered IP in a 

volume of 1 ml/kg body weight. 

 

5.3. Results 

 

Effects of Mu Agonists in the Assay of Acid-Stimulated Stretching 

 Across all 35 rats used for studies of acid-stimulated stretching, IP administration 

of 1.8% lactic acid (1.0 ml/ kg) after drug vehicle pretreatments elicited a mean ± SEM 

of 13.1 ± 4.1 writhes. The absolute number of control writhes elicited by acid after 

vehicle pretreatment in each group is reported in the legend of Figure 5.1. All 6 mu 

opioid receptor agonists produced a dose-dependent decrease in acid-stimulated 

stretching, and ED50 values are shown in Table 5.1. 

 

Effects of Mu Agonists in the Assay of Acid-Depressed ICSS 

 Effects of the lactic acid noxious stimulus on ICSS. Figure 5.2 shows effects 

of the same noxious stimulus (IP injection of 1.8% lactic acid) on ICSS. During each test 

session, a ‘‘baseline’’ frequency-rate curve was determined before experimental 

treatments to permit determination of the MCR for that session. Over the course of the 

entire study, the mean ± SEM MCR was 61.49 ± 8.91 stimulations per trial. 

Reinforcement rates during each frequency trial of a session were then expressed as a 

percentage of that session’s MCR, and the average frequency-rate curve for all studies 

with drug vehicle + acid vehicle is shown in Figure 2. Maximum reinforcement rates 
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were usually observed at the highest stimulation frequencies (112-158 Hz), and 

responding generally decreased in a frequency-dependent manner. Administration of 

1.8% lactic acid depressed ICSS, producing a rightward shift in the frequency-rate 

curve. Figure 5.2 also shows summary data for the total number of stimulations 

delivered across all 10 frequencies during each component. The overall mean ± SEM 

baseline number of stimulations per component for all rats in the study was 319 ± 79.5. 

Total ICSS after treatment with vehicle + acid vehicle was nearly identical to baseline 

pre-drug ICSS, but acid treatment decreased the number of stimulations per 

component. This acid-induced depression of ICSS provided a measure of pain-related 

behavioral depression, and opioids were evaluated for their ability to block this acid-

induced depression of ICSS. 

 Methadone and fentanyl. Figure 5.3 shows that methadone and fentanyl dose-

dependently and completely blocked 1.8% acid-induced depression of ICSS at or near 

doses that also facilitated control ICSS in the absence of the noxious acid stimulus. 

When administered as a pretreatment to acid vehicle, methadone doses of 0.032-0.32 

mg/kg produced leftward shifts in the ICSS frequency-rate curve and significant 

facilitation of ICSS at intermediate frequencies of brain stimulation, whereas the highest 

dose of 1.0 mg/kg methadone only depressed ICSS at the highest two frequency (141-

158 Hz) (Fig 5.3A). Similarly, when administered as a pretreatment to 1.8% lactic acid, 

methadone increased ICSS responding and ameliorated acid-induced depression of 

ICSS (Fig 5.3B). Significant increases in ICSS responding were observed after 

pretreatment with all methadone doses at a broad range of frequencies ranging from 

71-112 Hz, and 0.1 mg/kg was the dose that produced the maximal attenuation of acid-
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induced depression of ICSS. The highest dose of 1.0 mg/kg methadone also decreased 

ICSS at 158 Hz after acid pretreatment. 

Pretreatment with fentanyl also non-selectively increased ICSS responding in the 

absence (Fig 5.3D) or presence of the acid noxious stimulus (Fig 5.3E). Doses of 0.01 

and 0.032 mg/kg fentanyl significantly increased rates of reinforcement under both 

conditions across a broad range of frequencies from 79-112 Hz, and these effects of 

fentanyl are summarized in Figure 5.3F. Overall, methadone and fentanyl produced 

nonselective facilitation of ICSS in the absence or presence of acid, although both drugs 

were more efficacious to facilitate ICSS during acid treatment compared to acid vehicle 

treatment. 

Morphine and hydrocodone. Figure 5.4 shows effects of morphine and 

hydrocodone on ICSS in the absence or presence of the acid noxious stimulus.  When 

administered as a pretreatment to acid vehicle, morphine doses of 0.1-1.0 mg/kg had no 

significant effect on ICSS, but a higher dose of 3.2 mg/kg significantly depressed high 

rates of ICSS maintained by some high brain stimulation frequencies (Fig. 5.4A).  When 

administered as a pretreatment to lactic acid, morphine doses of 0.1-1.0 mg/kg dose-

dependently blocked acid-induced depression of ICSS; the higher dose of 3.2 mg/kg 

also attenuated acid-induced depression of ICSS, though to a lesser degree than 1.0 

mg/kg (Fig. 5.4B). In contrast to morphine, hydrocodone doses of 0.1-3.2 mg/kg dose 

dependently facilitated ICSS in the absence of the noxious stimulus (Fig. 5.4D) and also 

dose-dependently blocked acid-induced depression of ICSS (Fig. 5.4E). No dose of 

hydrocodone depressed ICSS at any frequency in the absence or presence of the 

noxious stimulus. Overall, both morphine and hydrocodone blocked acid-induced 
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depression of ICSS, although with hydrocodone, this was accompanied by facilitation of 

ICSS in the absence of the noxious stimulus (Fig. 5.4C and 5.4F).   

  Buprenorphine and nalbuphine. Figure 5.5 shows that, similar to 

hydrocodone, the lower efficacy mu agonists buprenorphine and nalbuphine produced 

dose-dependent facilitation of ICSS in the absence of the noxious stimulus (Fig. 5.5A 

and 5.5D) and also dose-dependently blocked acid-induced depression of ICSS (Fig. 

5.5B and 5.5E). No dose of buprenorphine or nalbuphine depressed ICSS at any 

frequency in the absence or presence of the noxious stimulus.  Summary data for 

buprenorphine and nalbuphine are shown in Figures 5.5C and 5.5F, respectively.    

Opioid ED50 values to block acid-induced depression of ICSS.  Figure 6 

shows effects of all 6 opioids expressed as ‘‘percent blockade” in the assay of acid-

induced depression of ICSS. For the highest efficacy drugs methadone, fentanyl and 

morphine, an inverted U-shape curve was produced, such that peak blockade of acid-

induced ICSS depression was achieved with intermediate doses (Fig. 5.6A).  

Conversely, hydrocodone, buprenorphine and nalbuphine produced dose-dependent 

blockade of acid-induced depression of ICSS across all doses examined (Fig. 5.6B).  

Table 5.1 shows ED50 values for the effects of each drug (derived from the ascending 

limbs of the dose-effect curves for methadone, fentanyl and morphine).   

 

Effects of Noxious Stimulus Intensity 

Figure 5.7 shows the effect of different concentration of lactic acid on acid-

stimulated writhing and acid-induced depression of ICSS. Vehicle produced 2.57 ± 1.72 

stretches during the 30-min observation period, and vehicle did not facilitate or depress 
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ICSS compared to baseline. Lactic acid produced a bitonic effect on acid-stimulated 

stretching, such that 0.56% and 5.6% acid did not produce significant stimulation of 

stretching relative to vehicle, whereas 1.8% acid did produce significant stimulation of 

stretching (Fig. 5.7A).  Because the high concentration of 5.6% lactic acid did not 

stimulate a significant stretching response, opioid effects were not examined.  On the 

other hand, lactic acid produced a concentration-dependent depression of ICSS that 

was significant after 1.8 and 5.6% acid (Fig. 5.7B).  Table 5.1 shows that increasing the 

noxious stimulus intensity to 5.6% lactic acid produced a decrease in the potency of 

both methadone (approximately 10-fold) and nalbuphine (approximately 15-fold) to 

block acid-induced depression of ICSS.   

 

5.4. Summary 

 This study examined the effects of mu opioid agonists in assays of acid-

stimulated stretching and acid-depressed ICSS in rats. Two independent variables were 

manipulated in each assay: the efficacy of mu agonists at the mu receptor, and the 

noxious stimulus intensity. Intraperitoneal injection of lactic acid produced 

concentration-dependent decrease in ICSS, and an inverted U-shape stimulation of 

stretching with a peak effect after 1.8% lactic acid. Pretreatment with mu agonists 

blocked acid-stimulated stretching and acid-induced depression of ICSS in the presence 

of 1.8% acid, regardless of the efficacy of the agonist. Increasing the intensity of the 

noxious stimulus decreased the potency of high and low mu opioid agonists to block 

acid-induced depression of ICSS. In the absence of the noxious stimulus and consistent 

with previous findings (Altarifi et al., 2012), mu agonists tended to produce facilitation of 
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ICSS, which did not vary systematically as a function of drug efficacy at the mu 

receptor. Overall, clinically used mu opioid analgesics are effective to produce 

antinociception in assays of pain-stimulated and pain-depressed behaviors.  
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Figure 5.1 

 

Figure 5.1. Effects of mu opioid agonists in the assay of acid-stimulated 

stretching. Abscissae: Dose in mg/kg. Ordinates: Percent control stretches. All points 

show mean data ± SEM from 5 to 8 rats, and ED50 values are reported in Table 5.1. 

The mean ± SEM number of control stretches for each group were as follows: 

methadone, 13.3 ± 4.3; fentanyl, 13.9 ± 2.7; morphine, 14.0 ± 7.6; hydrocodone, 12.7 ± 

3.1; buprenorphine, 12.3 ± 4.1; nalbuphine, 12.9 ± 2.8.
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Figure 5.2 

 

Figure 5.2. Depression of ICSS by 1.8% lactic acid. Left panel (A) compares effects 

of pretreatment with vehicle + vehicle (Veh + Veh) and vehicle + 1.8% lactic acid (Veh+ 

1.8% LA) on full frequency-rate curves for all 35 rats used in the first phase of ICSS 

experiments. Abscissa: Frequency of electrical brain stimulation in Hz. Ordinate: ICSS 

rate expressed as percent maximum control response rate (%MCR).  Two-way ANOVA 

indicated a significant main effect of frequency [F(9,306) = 295.4, P < .001] and acid 

treatment [F(1,34) = 86.8, P < .001], and the interaction was also significant [F(9,306) = 

10.2, P <0 .001]. The acid noxious stimulus significantly depressed ICSS at all 

frequencies (Holm-Sidak post hoc test, P < .05). Right panel (B) shows summary data 

for lactic acid effects on the total number of stimulations per component. Abscissa: 

Pretreatment conditions. Ordinate: Percent baseline number of stimulations per 

component. The downward arrow indicates that lactic acid produced a significant 

decrease in ICSS at 1 or more frequencies in the full frequency-rate curve. 
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Figure 5.3 
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Figure 5.3. Effects of the methadone (panels A–C, N = 6) and fentanyl (panels D–F, 

N = 5) on control and 1.8% acid-depressed ICSS. Left and center panels show drug 

effects on full frequency-rate curves when drugs were administered as a pretreatment to 

vehicle (Left panels A, D) or 1.8% lactic acid (center panels B, E). Abscissae: 

Frequency of electrical brain stimulation in Hz. Ordinates: Percent maximum control 

response rate (%MCR). Filled symbols indicate a significant difference from Veh+Veh 

(A, D) or Veh+LA (B, E) (Holm-Sidak post hoc test, P < .05). Right panels (C, F) show 

summary data for drug effects on the total number of stimulations per component when 

drugs were administered as a pretreatment to vehicle (open bars) or acid (filled bars), 

and # signs indicate significant acid-induced depression of ICSS under drug vehicle 

conditions (paired t-test). Abscissae: Dose of drug in mg/kg. Ordinate: Percent baseline 

number of stimulations per component. Upward/downward arrows indicate that the drug 

dose produced a significant increase/decrease in ICSS at 1 or more frequencies in the 

full frequency-rate curve. Statistical results for 2-way ANOVA of full frequency-rate 

curves are as follows: (A) Significant main effect of frequency [F(9,45) = 41.2, P < .001], 

dose [F(4,20) = 5.9, P = .003], and interaction [F(36,180) = 3.0, P < 0.001]. (B) 

Significant main effect of frequency [F(9,45) = 41.2, P < .001], dose [F(4,20) = 3.8, P = 

.018], and interaction [F(36,180) = 4.2, P < 0.001]. (D) Significant main effect of 

frequency [F(9,36) = 72.8, P < .001], but not dose [F(3,12) = 1.1, P = 0.384]; the 

interaction was significant [F(27,108) = 4.3, P < 0.001]. (E) Significant main effect of 

frequency [F(9,36) = 63.5, P < .001] and dose [F(3,12) = 6.1, P = 0.009] and [F(27,108) 

= 1.7, P = .030].
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Figure 5.4 

 

Figure 5.4. Effects of morphine (panels A–C, N = 6) and hydrocodone (panels D–F, 

N = 6) on control and 1.8% acid-depressed ICSS. Details as in Figure 5.3. Statistical 

results for 2-way ANOVA of full frequency-rate curves are as follows: (A) Significant 

main effect of frequency [F(9,45) = 91.9, P < .001], but not dose [F(4,20) = 1.2, P = 

0.356]; the interaction was significant [F(36,180) = 2.2, P < 0.001]. (B) Significant main 

effects of frequency [F(9,45) = 56.8, P < .001], dose [F(4,20) = 8.2, P < 0.001], and 

interaction [F(36,180) = 2.7, P < 0.001. (D) Significant main effect of frequency [F(9,45) 

= 71.0, P < .001], dose [F(4,20) = 8.0, P < .001], and interaction [F(36,180) = 5.6, P < 

.001]. (E) Significant main effect of frequency [F(9,45) = 70.0, P < .001], dose [F(4,20) = 

9.4, P < 0.001], and interaction [F(36,180) = 5.8, P < .001]. 
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Figure 5.5 

 

Figure 5.5. Effects of buprenorphine (panels A–C, N = 6) and nalbuphine (panels 

D–F, N = 6) on control and 1.8% acid-depressed ICSS. Details as in Figure 5.3. 

Statistical results for 2-way ANOVA of full frequency-rate curves are as follows: (A) 

Significant main effect of frequency [F(9,45) = 70.6, P < .001], dose [F(4,20) = 2.9, P = 

.049], and interaction [F(36,180) = 3.8, P < .001]. (B) Significant main effects of 

frequency [F(9,45) = 37.9, P < .001], dose [F(4,20) = 4.2, P = 0.012], and interaction 

[F(36,180) = 2.1, P < 0.001]. (D) Significant main effect of frequency [F(9,45) = 91.5, P 

< .001], but not dose [F(3,15) = 1.5, P = 0.261]; the interaction was significant 

[F(27,135) = 2.9, P < .001]. (E) Significant main effect of frequency [F(9,45) = 152.2, P < 

.001], dose [F(3,15) = 5.1, P =0.012], and interaction [F(27,135) = 2.9, P < .001]. 
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Figure 5.6 

 

 

 

Figure 5.6. Dose-effect curves for mu agonist blockade of acid-induced 

depression of ICSS. Abscissae: Dose in mg/kg. Ordinates: Percent blockade of acid-

induced depression of ICSS, calculated as described in Methods. All points show mean 

data ± SEM from 5 to 6 rats, and ED50 values are reported in Table 5.1. 
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Figure 5.7 

 

 

 

 

 

 

 

Figure 5.7. Effect of acid concentration on acid-stimulated stretching (left panel) 

and acid-depressed ICSS (right panel). Abscissae: lactic acid concentration 

administered IP; Left ordinate: number of stretches during the 30-min observation 

period; Right ordinate: Percent baseline number of stimulations per component. One-

way ANOVA (with Dunnett post-hoc test; P < 0.05) revealed the following results: (A) 

significant effect of concentration [F(6,18) = 16.7, P < 0.001]. (B) significant effect of 

acid concentration [F(12,36) = 22.3, P < 0.001]. # indicate conditions under which total 

number of stimulations was significantly different from 0% (vehicle). 
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Table 5.1. ED50 Values in mg/kg (95% Confidence Limits) for mu opioid agonists to 

produce antinociception in the assays of acid-stimulated stretching or acid-induced 

depression of ICSS. 

  
Acid-Stimulated 

Stretching 
Acid-Depressed ICSS 

1.8% Lactic Acid   

 Methadone 0.272 (0.145-0.511) 0.051 (0.030-0.085)* 

 Fentanyl 0.008 (0.006-0.011) 0.004 (0.003-0.006)* 

 Morphine 0.171 (0.097-0.301) 0.124 (0.070-0.218) 

 Hydrocodone 0.343 (0.236-0.501) 0.239 (0.161-0.355) 

 Buprenorphine 0.002 (0.001-0.005) 0.004 (0.002-0.008) 

 Nalbuphine 0.217 (0.152-0.309) 0.328 (0.130-0.826) 

5.6% Lactic Acid   

 Methadone Not Tested 0.51 (0.08-3.46) 

 Nalbuphine Not Tested 4.90 (1.52-15.86) 

 

* Indicates significantly different from acid-stimulated stretching as indicated by non-

overlapping confidence limits
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CHAPTER SIX 

Morphine antinociception is resistant to tolerance 

in an assay of pain-depressed intracranial self-stimulation 

 

 

 

6.1. Introduction 

 Data from chapter 4 show that repeated morphine produced tolerance to its own 

rate-decreasing effects. If rate-decreasing effects contribute to morphine-induced 

antinociception in assays of pain-stimulated behavior, then repeated morphine might 

also produce tolerance to morphine effects in these assays. Conversely, if rate-

decreasing effects do not contribute to morphine antinociception in assays of pain-

depressed behavior, then repeated morphine might not produce tolerance to morphine 

antinociception in these assays; rather, repeated morphine might even enhance 

antinociception in these assays by producing tolerance to rate-decreasing effects that 

initially oppose and limit expression of antinociception. Thus, the hypothesis was that 

morphine would maintain or increase its antinociceptive potency in the assay of acid-

induced depression of ICSS, but that tolerance would develop to morphine 

antinociception in the assay of acid-stimulated stretching. 
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6.2. Methods 

 

6.2.1. Subjects 

 Subjects are similar to those described on section 2.2.1. 

 

6.2.2. Assay of intracranial self-stimulation 

 Intracranial self-stimulation electrode implantation and behavioral procedure are 

similar to those described on section 2.2.2. 

Testing: Once training and habituation to saline injections were completed, all 

rats received a single injection of 1.8% lactic acid to confirm sensitivity to acid-induced 

depression of ICSS prior to further testing. Next, “pre-drug baseline” sessions were 

conducted over a period of 3 consecutive days to establish baseline ICSS performance 

before administration of any dose of morphine. Each pre-drug baseline session 

consisted of 3 components as described in section 2.2.2, after which chronic treatment 

was initiated. Rats were divided into two groups that received either repeated morphine 

or repeated vehicle for 7 consecutive days.  Rats receiving repeated morphine were 

treated with 3.2 mg/kg/day on days 1 and 2, 5.6 mg/kg/day on days 3 and 4, and 10 

mg/kg/day on days 5, 6, and 7. The control group received daily vehicle (saline) 

injections.  Three ICSS components were conducted before each daily injection, and 

two additional ICSS components were conducted beginning 30 min after each injection.  

On days 8, 10, 12, and 14, all animals in both groups were tested with a sequence of 

four treatments: (1) morphine vehicle + acid vehicle, (2) morphine vehicle + 1.8% lactic 

acid, (3) 1.0 mg/kg morphine + acid vehicle”, or (4) 1.0 mg/kg morphine + 1.8% lactic 
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acid.  Morphine or its vehicle was administered 30 min before acid or its vehicle, and 

treatment order was randomized in a Latin-square design across animals. On each test 

day, ICSS was evaluated during 3 baseline components, followed immediately by 

subcutaneous treatment with 1.0 mg/kg morphine or its vehicle, after which subjects 

were returned to their home cages. After 30 min, subjects were treated intraperitoneally 

with 1.8% lactic acid or its vehicle and returned to the ICSS chambers for 2 ICSS test 

components. Immediately after testing, subjects in the chronic morphine group received 

a supplemental injection of morphine (either 9 or 10 mg/kg) to maintain the total daily 

dose of 10 mg/kg/day. In addition, on the non-test days (i.e. Days 9, 11, and 13), 

animals were maintained on 10 mg/kg/day morphine or vehicle, and ICSS components 

were conducted before and after injections as on Days 1-7. Table 6.1 summarizes all 

the treatments over the two-week chronic experiment. 

Data analysis. The primary dependent measure was the total number of 

stimulations delivered across all 10 frequency trials of each component.  The first ICSS 

component each day was considered to be a warm-up component, and data were 

discarded.   Baseline ICSS in each subject was determined by averaging the number of 

stimulations per component during the second and third components across the 3 pre-

drug baseline days before chronic treatment was initiated (6 total components). 

Baseline ICSS values in the chronic saline and morphine groups were compared by t-

test. Data collected during chronic treatment and testing were then normalized to these 

baselines using the equation % Baseline Stimulations per Component = (Stimulations 

per Test Component /Baseline) x 100.  Statistical analysis focused on data from the test 

components on Days 8, 10, 12 and 14. Data from these 2 test components were 
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averaged within each rat to yield average % Baseline Stimulations per Component for 

each treatment in each rat.  Data for each treatment were then averaged across rats 

and compared by two-way ANOVA, with acute treatment as one factor (1.0 mg/kg 

morphine or vehicle + 1.8% acid or vehicle), and chronic treatment as the other factor 

(10 mg/kg/day morphine or vehicle). A significant ANOVA was followed by the 

Bonferroni post-hoc test, and the criterion for significance was set a priori at P < 0.05. 

 

6.2.3 Assay of acid-stimulated stretching 

 To evaluate stretching behavior, rats were placed into acrylic test chambers (31.0 

X 20.1 X 20.0 cm) for 30-minute observation periods. A stretch was operationally 

defined as a contraction of the abdomen followed by extension of the hind limbs, and 

the number of stretches during the observation period was counted. Initially, all rats 

were evaluated for 30 min after a single injection of 1.8% lactic acid to confirm 

sensitivity to acid-stimulated stretching prior to further testing.  Subsequently, rats were 

divided into two groups that received either repeated morphine or repeated vehicle for 7 

consecutive days.  As in the assay of acid-depressed ICSS, rats receiving repeated 

morphine were treated with 3.2 mg/kg/day on days 1 and 2, 5.6 mg/kg/day on days 3 

and 4, and 10 mg/kg/day on days 5, 6, and 7, whereas the control group received daily 

vehicle (saline) injections. To mimic handling conditions in ICSS rats, subjects were 

placed into a clean acrylic chamber for 30 minutes before each daily injection, returned 

to their home cage for 30 min after each daily injection, and then placed back into the 

acrylic chamber for another 30 minutes. On days 8, 10, 12, and 14, all rats in both 

groups were tested with the same sequence of treatments that was tested in ICSS rats: 
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(1) morphine vehicle + acid vehicle, (2) morphine vehicle + 1.8% lactic acid, (3) 1.0 

mg/kg morphine + acid vehicle, or (4) 1.0 mg/kg morphine + 1.8% lactic acid. On each 

test day, rats were placed into the acrylic observation chamber for 30 min, followed 

immediately by subcutaneous treatment with 1.0 mg/kg morphine or its vehicle, and 

subjects were then returned to their home cages. After 30 min, subjects were treated 

intraperitoneally with 1.8% lactic acid or its vehicle and returned to the chamber for 

observation of stretching.  Immediately after testing, subjects in the chronic morphine 

group received a supplemental injection of morphine to maintain the total daily dose of 

10 mg/kg/day.  In addition, on the non-treatment days (i.e. Days 9, 11, and 13), rats 

were maintained on 10 mg/kg/day morphine or vehicle and exposed to the acrylic 

chamber before and after injections as on Days 1-7.    

 Data Analysis. The primary dependent variable was the number of stretches 

observed during the 30-minute observation period after treatments on test days 8, 10, 

12 and 14. Data for each treatment were averaged across rats and compared by two-

way ANOVA, with acute treatment as one factor (1.0 mg/kg morphine or vehicle + 1.8% 

acid or vehicle), and chronic treatment as the other factor (10 mg/kg/day morphine or 

vehicle). A significant ANOVA was followed by the Bonferroni post-hoc test, and the 

criterion for significance was set a priori at P < 0.05. 

 

6.2.4. Drugs 

 Morphine sulfate was provided by the National Institute on Drug Abuse Drug 

Supply Program (Bethesda, Maryland, USA) and prepared in sterile saline for 

subcutaneous injection.  Lactic acid was purchased from Sigma Aldrich (St. Louis, MO) 



www.manaraa.com

   

 - 113 - 

and diluted in sterile water for intraperitoneal injection.  All injections were delivered in a 

volume of 1.0 ml/kg. 

 

6.3. Results  

 Assay of acid-stimulated stretching. Figure 6.1 shows the effects of different 

acute treatments on stretching behavior in rats treated chronically with vehicle or 

morphine.  In the chronic vehicle group, 1.8% lactic acid stimulated a stretching 

response, and 1.0 mg/kg morphine blocked acid-stimulated stretching while having no 

effect on stretching in the absence of the noxious stimulus.  In the chronic morphine 

group, 1.8% lactic acid stimulated a significantly greater number of stretches than in the 

chronic vehicle group.  Moreover, tolerance developed to the antinociceptive effects of 

1.0 mg/kg morphine, such that morphine no longer produced a significant decrease in 

stretching.  In addition, stretching after treatment with 1.0 mg/kg morphine + acid was 

significantly greater in the chronic morphine group than in the chronic vehicle group. 

 

Assay of acid-depressed ICSS. During baseline sessions, the mean ± SEM total 

numbers of stimulations for the chronic vehicle group and chronic morphine group were 

339.8 ± 37.8 and 312.9 ± 57.9 stimulations per component, respectively (t=0.34, not 

significantly different).  Figure 6.2 shows the effects of different acute treatments on 

ICSS in rats treated chronically with vehicle or morphine. In the chronic vehicle group, 

1.8% lactic acid significantly depressed ICSS, and 1.0 mg/kg morphine blocked acid-

induced depression of ICSS while having no effect on ICSS in the absence of the 

noxious stimulus. In the chronic morphine group, 1.8% lactic acid also depressed ICSS.  
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Although mean rates of ICSS were lower after acid in the chronic morphine group than 

in the chronic vehicle group, this difference was not statistically significant. Tolerance 

did not develop to morphine antinociception in the chronic morphine group. Thus, as in 

the chronic vehicle group, 1.0 mg/kg morphine blocked acid-induced depression of 

ICSS at a dose that did not alter ICSS in the absence of the noxious stimulus. ICSS 

after 1.0 mg/kg morphine + acid was not different in the chronic vehicle and chronic 

morphine groups. 

 

6.4. Summary  

 This study examined the hypothesis that morphine would maintain or increase its 

antinociceptive potency in the assay of acid-induced depression of ICSS, but that 

tolerance would develop to morphine antinociception in the assay of acid-stimulated 

stretching. My results were consistent with this hypothesis and two main findings 

summarize my results. First, repeated morphine administration exacerbated acid-

induced stretching and acid-induced depression of ICSS when lactic was administered 

during morphine abstinence. Second, morphine at a dose of 1.0 mg/kg was effective to 

block acid-induced stretching and acid-depressed ICSS in the repeated-vehicle treated 

group. However, repeated morphine administration produced tolerance to the 

antinociceptive effect of 1.0 mg/kg morphine in the assay of acid-stimulated stretching, 

but not in the assay of acid-depressed ICSS.   



www.manaraa.com

   

 - 115 - 

Figure 6.1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1. Effects of different acute treatments on stretching behavior in rats 

treated chronically with vehicle or morphine. Subjects were treated repeatedly with 

saline (open bars) or morphine (filled bars). Horizontal axis: acute treatment of 1.0 

mg/kg morphine or vehicle + 1.8% lactic acid or vehicle. Vertical axis: number of 

stretches during 30-min observation period. Two-way ANOVA showed that there was 

significant main effect of acute treatment [F=45.4; P<0.001], significant main effect of 

chronic group [F=34.1; P<0.001], and significant treatment x chronic group interaction 

[F=9.7; P<0.001]. * Asterisks indicate treatments that were significantly different from 

vehicle + vehicle within the same group. $ Dollar signs indicate treatments that were 

significantly different from vehicle + 1.8% lactic acid within the same group. # indicates 

significance between groups after the same treatment. 
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Figure 6.2 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Effects of different acute treatments on ICSS behavior in rats treated 

chronically with vehicle or morphine. Subjects were treated repeatedly with saline 

(open bars) or morphine (filled bars). Horizontal axis: acute treatment of 1.0 mg/kg 

morphine or vehicle + 1.8% lactic acid or vehicle. Vertical axis: percent baseline number 

of stimulations per component. Two-way ANOVA showed that there was a significant 

main effect of acute treatment [F=11.8; P<0.001], no significant main effect of chronic 

group [F=1.2; P=0.281], and no significant treatment x chronic group interaction [F=1.6; 

P=0.214]. * Asterisks indicate treatments that were significantly different from vehicle + 

vehicle within the same group. $ Dollar signs indicate treatments that were significantly 

different from vehicle + 1.8% lactic acid within the same group.  
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Table 6.1. Summary table representing the daily treatments for each group in the 

study. Morphine doses are shown in mg/kg.  “Test” indicates a treatment with (1) 

morphine vehicle + acid vehicle, (2) morphine vehicle + 1.8% lactic acid, (3) 1.0 mg/kg 

morphine + acid vehicle, or (4) 1.0 mg/kg morphine + 1.8% lactic acid.  Subjects in the 

chronic morphine group also received a supplemental treatment of morphine at the end 

of the test session on that day to maintain the total dose at 10 mg/kg/day. The chronic 

vehicle group did not receive any supplemental injections on test days. 

 

 

 

 
Day 

Chronic vehicle group Chronic Morphine Group 

Daily treatment Daily treatment Supplemental treatment 

1-2 Saline 3.2 morphine N/A 

3-4 Saline 5.6 morphine N/A 

5-7 Saline 10 morphine N/A 

8 Test Test 9-10 morphine 

9 Saline 10 morphine N/A 

10 Test Test 9-10 morphine 

11 Saline 10 morphine N/A 

12 Test Test 9-10 morphine 

13 Saline 10 morphine N/A 

14 Test Test 9-10 morphine 
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CHAPTER SEVEN 

Discussion 

 

 

 

7.1. General summary 

This project tested a series of independent variables to evaluate effects of mu 

opioid receptor agonists on ICSS. Some of these independent variables include drug 

efficacy, dose, pretreatment time, and repeated administration of morphine. Opioids’ 

effects on ICSS were evaluated in two phases:  

1) Phase 1: Experiments were conducted in the absence of any noxious 

stimulus. 

2) Phase 2: opioid effects were evaluated in the presence of an acute visceral 

noxious stimulus (intraperitoneal injection of dilute lactic acid) 

 

The discussion that follows will describe and interpret mu agonist effects on 

ICSS. As a prelude to this discussion, it should be noted that our “frequency-rate” ICSS 

procedure used a wide range of brain stimulation frequencies to maintain a wide range 

of baseline behavioral rates. Drug effects on these different baseline rates of behavior 

will be described using two terms.  “Rate-decreasing effects” describes treatment-
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induced decreases in high rates of ICSS maintained by high brain stimulation 

frequencies.  “Rate-increasing effects” will be used to describe treatment-induced 

increases in low rates of ICSS maintained by low brain stimulation frequencies.  

Importantly, both effects can occur simultaneously, and these two effects can be 

differentially modulated.   

Phase 1. Four major findings summarize data from this phase. First, effects of acute 

opioid administration in naïve subjects are efficacy dependent, such that high-efficacy 

ligands produce dose-dependent rate-decreasing effects, while low-efficacy ligands 

produce mild and inconsistent rate-increasing effects and antagonize the rate-

decreasing effects of high-efficacy agonists. Second, repeated administration of 

morphine produces tolerance to its rate-decreasing effect and cross-tolerance to the 

rate-decreasing effects of other high-efficacy ligands, such as methadone and fentanyl. 

Third, repeated morphine administration does not produce clear tolerance to its rate-

increasing effects, but rather enhances the expression of abuse-related rate-increasing 

effects of high- and low-efficacy mu agonists. Finally, abstinence from morphine after 

repeated administration induces withdrawal-related decrease in ICSS. Collectively, 

these findings suggest that mu opioid agonist effects on ICSS are dependent on history 

of opioid administration, and abuse liability of these drugs is enhanced after repeated 

opioid administration.  

 

Phase 2. Results from this phase can be summarized into three major findings. First, 

mu receptor agonists blocked pain-induced depression of ICSS; there was little effect of 

efficacy between drugs with the exception that high-efficacy drugs produced inverted U- 
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shaped dose-effect curves, and also tended to be more potent to block acid-depressed 

ICSS compared to acid-stimulated stretching. Second, both the high-efficacy agonist 

methadone and the low-efficacy agonist nalbuphine retained their antinociceptive 

effects in the presence of a high intensity noxious stimulus, although the potency of both 

drugs was reduced. Third, morphine antinociception was resistant to tolerance in the 

assay of acid-depressed ICSS in comparison to the assay of acid-stimulated stretching. 

Taken together, these findings suggest that mu agonists across a broad range of 

efficacies produce antinociception in this assay of acid-depressed ICSS, and that 

morphine antinociception in this assay is resistant to tolerance. The potential 

relationship will be discussed below between (a) increased expression of ICSS 

facilitation after repeated morphine, and (b) resistance to antinociceptive tolerance in 

the assay of acid-depressed ICSS.  

 

7.2. Effects of acute morphine (phase 1) 

 Results in chapter 2 agree with previous studies in finding that acute morphine 

effects on ICSS can display a biphasic time course characterized by an initial decrease 

followed by a subsequent increase in rates of ICSS (Adams et al., 1972; Lorens and 

Mitchell, 1973; Bermudez-Rattoni et al., 1983). A similar biphasic time course was also 

produced by the mu agonist heroin (Koob et al., 1975). In these earlier studies, baseline 

responding was maintained at relatively stable rates by constant intensities and 

frequencies of electrical stimulation. This study extends these findings by using a 

‘frequency–rate’ procedure that generated a wide range of baseline response rates to 

systematically examine the rate dependency of acute morphine effects. This procedure 
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confirmed that early rate-decreasing effects of morphine were greatest for high baseline 

response rates maintained by high frequencies of stimulation, whereas later rate-

increasing effects of morphine were most prominent for low to intermediate response 

rates maintained by low-to-intermediate frequencies of stimulation. Additional 

discussion of rate dependence is provided below. 

 In chapter 2, low morphine doses (1–3.2 mg/kg) produced small but significant 

increases in low ICSS rates during the first 30 min after morphine injection. This agrees 

with the finding that similarly low morphine doses at similarly short pretreatment times 

produced facilitation of ICSS in some (Kornetsky and Esposito, 1979; Carlezon and 

Wise, 1993; Jha et al., 2004) but not all (Stratmann and Craft, 1997; Pereira Do Carmo 

et al., 2009) studies that focused on low baseline ICSS rates maintained by threshold 

frequencies or intensities of stimulation. However, any facilitation of ICSS observed 

early in the time course of low-dose acute morphine is weaker and less consistent than 

the more robust facilitation of ICSS observed later in the time course of larger morphine 

doses (chapter 2; (Easterling and Holtzman, 1997; O'Neill and Todtenkopf, 2010)). 

 The biphasic time course of acute morphine effects on rates of ICSS is similar to 

the biphasic time course of morphine effects on rates of locomotor activity in rats (Vasko 

and Domino, 1978; Craft et al., 2006). For example, morphine (1–10 mg/kg 

subcutaneously) produced initial dose-dependent decreases (approximately 30–90 min 

after injection) followed by later increases (approximately 2–5 h after injection) in 

horizontal activity in male rats relative to their saline-treated controls (Craft et al., 2006). 

Moreover, the time course of morphine-induced depression of ICSS and locomotion 

corresponds to the time course of morphine-induced depression of some other 



www.manaraa.com

   

 - 122 - 

behaviors, such as thermal nocifensive behaviors in tail flick and hot-plate assays 

(Cicero et al., 1996; Cicero et al., 1997), and a stimulation of pain-related behaviors 

may emerge after antinociceptive effects have dissipated (i.e. opioid-induced 

hyperalgesia) (Chu et al., 2008). Taken together, these findings provide evidence of 

relatively broad behavioral depressant effects of acute morphine that may be followed 

by later behavioral stimulant effects. Factors that underlie the emergence of morphine-

induced stimulant effects are not known. One possibility is that acute tolerance develops 

to behavioral depressant effects, thereby unmasking behavioral stimulant effects. 

Section 7.4 discusses this possibility based on data collected from chronic studies. 

 

7.3. Effects of drug efficacy (phase 1) 

 Drugs with varying efficacies at mu receptors can be tested to provide insight into 

the efficacy requirements of different effects produced by mu agonists. For example, 

low-efficacy mu agonists such as nalbuphine often produce antinociception against low- 

but not high-intensity noxious thermal stimuli, whereas higher efficacy mu agonists such 

as morphine and methadone are more likely to produce antinociception against both 

low- and high-intensity noxious stimuli (Morgan et al., 1999; Negus and Mello, 1999; 

Cook et al., 2000). Such data provide one source of evidence to suggest that 

antinociception against low-intensity noxious stimuli in conventional assays of pain-

stimulated behavior has lower efficacy requirements than antinociception against high-

intensity noxious stimuli.   

 In chapter 3, the low-efficacy mu agonist nalbuphine facilitated ICSS across a 

broad range of doses but produced little or no depression of ICSS, whereas the higher 
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efficacy mu agonist methadone produced biphasic facilitation and depression of ICSS. 

These findings are superficially consistent with lower efficacy requirements for 

facilitation than depression of ICSS. However, these results were collected in opioid-

experienced rats, albeit using a twice-per-week testing regimen intended to minimize 

opioid tolerance. Given the known potential for opioid exposure to attenuate ICSS-

depressing effects as shown in Chapter 2, a follow-up study was conducted with 

nalbuphine and methadone in opioid-naïve rats. Methadone was more potent in 

depressing ICSS and both drugs were less effective in facilitating ICSS in opioid-naïve 

than opioid-experienced rats. The differences in methadone effects between opioid-

naïve and opioid-experienced rats suggests that even intermittent opioid exposure 

associated with twice-per-week testing was sufficient to produce tolerance to ICSS 

depression similar to that observed with more intensive daily regimens of morphine 

treatment (Chapter 2). Moreover, these results suggest that opioid exposure also 

augments expression of rate-increasing effects produced by low-efficacy mu agonists 

like nalbuphine that do not reliably facilitate ICSS in naïve rats. Overall, the limited and 

unreliably dose-dependent ability of nalbuphine to facilitate ICSS in rats with little or no 

history of opioid exposure fails to support the hypothesis that opioid-induced facilitation 

of ICSS has lower efficacy requirements at mu receptors than opioid-induced 

depression of ICSS.  This conclusion was also supported by other experiments 

conducted in the same laboratory, which showed similar sensitivity of morphine-induced 

rate-increasing and rate-decreasing effects to antagonism by the irreversible mu 

antagonist ß-funaltrexamine (Altarifi et al., 2012). 
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7.4. Effects of repeated morphine administration (phase 1) 

 

7.4.1. Effects of morphine during repeated administration of morphine 

 In chapter 2, repeated morphine treatment reduced the initial rate-decreasing 

effects of morphine while producing earlier expression of rate-increasing effects. The 

onset of tolerance to the rate-decreasing effects of morphine seemed to be rapid. 

Informal analysis of data obtained during the acute-dosing phase of the study did not 

reveal a systematic effect of the dose order on rate-increasing versus rate-decreasing 

morphine effects (data not shown); however, ICSS was not significantly altered 30 min 

after 3.2 mg/kg morphine during the acute phase of the study but was significantly 

facilitated 30 min after administration of the same dose on day 1 of the chronic dosing 

phase of the study. This suggests that morphine exposure associated with intermittent 

dosing to determine the dose-effect curve during the acute-dosing phase of the study 

was sufficient to produce some degree of tolerance to the rate-decreasing effects of 

morphine, and the extent of this tolerance became more pronounced during the chronic-

dosing phase. This agrees with the effects of repeated morphine from studies that used 

simpler ICSS procedures in which relatively constant baseline response rates were 

maintained by constant magnitudes of brain stimulation (Lorens and Mitchell, 1973). For 

example, Lorens and Mitchell 1973 administered morphine doses of 5, 10, or 20 mg/kg 

daily for 5 days in rats trained to respond for a single magnitude of brain stimulation. On 

the first day of treatment, all three doses produced initial rate-decreasing effects 

followed by later rate-increasing effects. However, as early as the third day of treatment, 
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doses of 5 and 10 mg/kg morphine ceased to produce rate-decreasing effects, and rate-

increasing effects occurred with an earlier onset and similar duration of action. These 

results also agree with studies using more sophisticated procedures that showed 

reductions in initial rate-decreasing effects and/or increased expression of rate-

increasing effects during repeated morphine treatment (Carlezon and Wise, 1993; 

Easterling and Holtzman, 1997; Craft et al., 2001). This study adds to this literature by 

evaluating the effects of a broad range of morphine doses on responding maintained 

across a broad range of ICSS rates. Finally, the tolerance to morphine-induced rate-

decreasing effects produced by repeated morphine in assays of ICSS is qualitatively 

similar to the rapid tolerance to morphine-induced rate-decreasing effects that develop 

in assays of locomotor activity (Babbini and Davis, 1972; Vasko and Domino, 1978; 

Smith et al., 2009). 

A parsimonious interpretation of these data is that morphine effects on ICSS 

reflect an integration of rate-decreasing and rate-increasing effects, and that tolerance 

to rate-decreasing effects results in an unmasking of rate-increasing effects. The 

mechanisms responsible for this tolerance are not known and may include processes of 

either pharmacodynamic or behavioral tolerance (Smith, 1979; Negus et al., 2010). For 

example, it is well-established that tolerance can develop at different rates to different 

morphine effects, and this differential tolerance to behavioral effects is accompanied by 

differential tolerance to intracellular signaling in different mu opioid receptor populations 

in the brain. Thus, chronic morphine treatment selectively decreased mu agonist-

stimulated G-protein activation in brainstem nuclei (including dorsal raphe nucleus and 

locus coeruleus) thought to contribute to rate-decreasing effects of opioids, but not in 
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the forebrain structures (including NA and amygdala) thought to contribute to the 

stimulant effects of opioids (Broekkamp et al., 1976; Sim et al., 1996). Overall, mu 

receptor populations mediating abuse-related facilitation of ICSS may be more resistant 

to tolerance during chronic opioid exposure than mu receptor populations mediating rate 

suppression. Increased expression of morphine-induced stimulant effects may involve 

not only a resistance to tolerance but also a sensitization of neural circuits that mediate 

these effects. For example, a regimen of repeated morphine administration similar to 

that used here increased expression of the GluR1 subunit of AMPA glutamate receptors 

in rat ventral tegmental area, an effect that could increase sensitivity of ventral 

tegmental area dopaminergic neurons to glutamatergic inputs (Fitzgerald et al., 1996). 

 

7.4.2. Cross-tolerance between opioids on ICSS 

Chapter 4 examined the impact of graded morphine exposure on changes in 

ICSS produced by agonists with high efficacy (methadone), intermediate efficacy 

(fentanyl) or low efficacy (nalbuphine) at mu opioid receptors. There were three main 

findings.  First, in agreement with previous results with morphine described in chapter 3, 

the higher efficacy mu agonists methadone and fentanyl produced primarily rate-

decreasing effects in opioid-naïve subjects, whereas the low-efficacy mu agonist 

nalbuphine produced primarily rate-increasing effects that did not vary systematically as 

a function of dose. Second, repeated morphine produced cross tolerance to the rate-

decreasing effects and enhanced expression of the rate-increasing effects of all three 

mu agonists. Lastly, the daily morphine dosing regimen used here produced withdrawal-

associated decreases in baseline ICSS determined approximately 23 hrs after 
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morphine. Repeated morphine also enhanced rate-decreasing effects of the antagonist 

naltrexone. However, this evidence of opioid dependence and withdrawal was not 

sufficient to account for enhanced expression of mu agonist-induced rate-increasing 

effects. Taken together, these results provide further evidence to suggest that repeated 

opioid exposure increases the degree to which mu agonists produce abuse-related 

facilitation of ICSS.     

 Opioid effects in opioid-naïve rats.  The constellation of rate-increasing and 

rate-decreasing effects produced by methadone, fentanyl and nalbuphine in opioid-

naïve subjects in this study agrees with effects reported previously for these and other 

mu agonists that vary in efficacy at mu receptors (Chapter 3; Altarifi and Negus, 2011; 

Altarifi et al., 2012).  Specifically, rate-decreasing effects predominate for high-efficacy 

agonists; lower efficacy agonists produce weaker and more variable evidence of rate-

increasing and rate-decreasing effects; and antagonists such as naltrexone fail to alter 

ICSS at doses that antagonize effects of mu agonists. The efficacy-dependent rate-

decreasing effects of mu agonists in this ICSS procedure agree with the efficacy-

dependent magnitude and/or variability in rate-decreasing effects of mu agonists in 

other assays of responding maintained by other reinforcers (e.g. food) under other 

schedules (Oliveto et al., 1991; Pitts et al., 1996).  Moreover, in the ICSS literature, 

drug-induced facilitation of ICSS is often interpreted as evidence of an abuse-related 

effect, whereas drug-induced depression of ICSS is often interpreted as evidence of 

abuse-limiting dysphoric effects or motor impairment (Carlezon and Chartoff, 2007).  

From this perspective, the present results could be interpreted to suggest that abuse-

limiting dysphoric and/or motor effects often predominate over abuse-related rewarding 
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effects of mu agonists in opioid-naïve rats. This finding in ICSS may be related to the 

observation that mu agonists are often more efficacious to produce dysphoric subjective 

effects and behavioral impairment than abuse-related euphoric effects in opioid-

naïve/inexperienced human subjects (Lasagna et al., 1955; Walker et al., 2001).  

 Opioid effects in morphine-treated rats.  Repeated morphine has been shown 

previously to produce tolerance to the ICSS-decreasing effects of morphine (Lorens and 

Mitchell, 1973; Altarifi and Negus, 2011), and the present study found that repeated 

morphine also produced cross-tolerance to the ICSS-decreasing effects of the other mu 

agonists methadone and fentanyl. This agrees with previous reports of morphine-

induced cross tolerance to other effects of methadone and/or fentanyl, including their 

rate-decreasing effects in assays of schedule-controlled responding for food 

reinforcement (Picker et al., 1991; Hughes et al., 1995; Smith et al., 1997) or their 

morphine-like discriminative stimulus effects (Young et al., 1991; Walker et al., 1997).  

Nalbuphine produced only small and inconsistent rate-decreasing effects before 

morphine treatment, and as a result, cross tolerance was difficult to assess.  

Nonetheless, the complete absence of nalbuphine-induced rate-decreasing effects 

during morphine treatment suggests that morphine also produced cross tolerance to 

any rate-decreasing effects of nalbuphine. Previous studies have failed to reveal cross 

tolerance between the rate-decreasing effects of morphine and nalbuphine in assays of 

schedule-controlled responding for food (Oliveto et al., 1991; Picker and Yarbrough, 

1991; Smith et al., 1997), but nalbuphine rate-decreasing effects in these studies 

occurred only at high doses, were variable across subjects, and may have been 

associated with precipitated withdrawal during morphine treatment (see below). The 
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present findings agree with previous reports of cross tolerance between other effects of 

morphine and nalbuphine, such as discriminative stimulus effects (Walker et al., 1997) 

and thermal antinociceptive effects (Gringauz et al., 2001).  

 In addition to producing tolerance to mu agonist-induced rate-decreasing effects, 

repeated morphine treatment also enhanced expression of mu agonist-induced 

facilitation of ICSS. This agrees with previous studies reporting that repeated morphine 

enhances expression of its own ICSS-facilitating effects (Carlezon and Wise, 1993; 

Altarifi et al., 2012), and extends this phenomenon to other mu agonists with a broad 

range of efficacies at mu receptors.  As discussed above with morphine, unmasking of 

the rate-increasing effect after selective tolerance to rate-decreasing effects and/or 

sensitization to neural substrates that mediate rate-increasing effects are possible 

explanations for the enhanced expression of abuse-related rate-increasing effects of 

other mu agonists during morphine treatment. Regardless of the underlying mechanism, 

these data suggest a shift in morphine effects that favors expression of abuse-related 

rate-increasing effects relative to abuse-limiting rate-decreasing effects.  This shift 

apparent in ICSS may be related to the finding that regimens of mu agonist exposure 

can also increase expression of abuse-related rewarding effects in preclinical assays of 

place conditioning (Lett, 1989; Shippenberg et al., 1996), increase reinforcing effects in 

preclinical assays of self-administration (Thompson and Schuster, 1964; Yanagita, 

1978; Carrera et al., 1999; Negus and Rice, 2009), and increase expression of abuse-

related subjective effects and reinforcing effects in humans (Comer et al., 2010; Cooper 

et al., 2012). 
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 The regimen of repeated morphine treatment used in this study produced little 

evidence of tolerance to mu agonist-induced ICSS facilitation, even when the daily 

morphine dose was increased to 18 mg/kg/day. This dose was sufficient to produce 

signs of morphine dependence (see below), but even the low-efficacy mu agonist 

nalbuphine continued to produce significant ICSS facilitation across the entire dose 

range tested.  Indeed, the only evidence for tolerance to rate-increasing effects was that 

a dose of 0.01 mg/kg fentanyl facilitated ICSS during treatment with 3.2 mg/kg/day 

morphine but not during treatment with 18 mg/kg/day morphine.  It is possible that more 

intensive treatment regimens (e.g. higher morphine doses or longer treatment times) 

may have produced tolerance to rate-increasing effects.  However, the present results 

suggest that mu agonist-induced facilitation of ICSS is relatively resistant to tolerance. 

 

7.4.3. Role of morphine dependence and withdrawal 

 In addition to producing tolerance to morphine-induced rate-decreasing effects, 

repeated morphine also produced dependence as indicated by dose-dependent 

decreases in ICSS during spontaneous morphine withdrawal (figure 2.4; figure 4.1) and 

during precipitated withdrawal after administration of the mu opioid receptor antagonist 

naltrexone (figure 4.5). These findings agree with other studies reporting reductions in 

ICSS during spontaneous or antagonist-precipitated morphine withdrawal (Schaefer and 

Michael, 1983; Easterling and Holtzman, 1997; Liu and Schulteis, 2004). The absence 

of clear somatic withdrawal signs during spontaneous withdrawal further suggests that 

ICSS may be more sensitive than commonly assessed somatic signs to the impact of 

opioid withdrawal. 
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 The withdrawal-associated depression of ICSS could be reversed by all three mu 

agonists (chapter 4). However, three findings suggest that enhanced expression of mu 

agonist-induced ICSS facilitation could not be attributed completely to reversal of 

morphine withdrawal. First, this enhanced expression of ICSS facilitation was observed 

during treatment with a lower dose of 3.2 mg/kg/day morphine, which did not produce 

evidence of dependence or withdrawal.  Second, during treatment with 18 mg/kg/day 

morphine, nalbuphine reliably facilitated ICSS despite its simultaneous precipitation of 

diarrhea, a common sign of opioid withdrawal. Lastly, the enhanced expression of 

methadone- and nalbuphine-induced facilitation of ICSS was also observed more than 2 

weeks after termination of repeated morphine, a time when signs of morphine 

dependence and withdrawal had dissipated (figure 4.6). 

 

7.5. Rate-dependency of morphine effect (phase 1) 

 “Rate-dependency” in behavioral pharmacology describes a phenomenon in 

which the effect of a drug on the rate of a behavior varies systematically as a function of 

the baseline, pre-drug rate of that behavior (Dews, 1958; Sanger and Blackman, 1976; 

Dews, 1981). Rate-dependent effects of a given drug dose under FI schedules are 

typically manifested as some degree of increase in low rates of behavior coupled with 

smaller increases or with decreases in higher rates of behavior, and this relationship is 

often displayed as a negatively sloped line on a graph that plots baseline rate on the 

abscissa (usually expressed “log baseline rate”) as a function of rate after drug 

administration on the ordinate (usually expressed as “log % baseline rate”) (Dews, 

1964; Kelleher and Morse, 1968; McMillan, 1973; Sanger and Blackman, 1976). We  
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found previously that abuse liability of monoamine releasers may be related to 

expression of rate-dependent drug effects in assays of ICSS (Bauer et al., in press). A 

key finding of the present study was that repeated morphine treatment increased the 

rate dependence of morphine effects on ICSS. Early in the time course after acute 

administration, morphine effects on ICSS displayed rate dependence only insofar as the 

highest morphine dose (10mg/kg) decreased high ICSS rates maintained by high 

frequencies of stimulation more than it decreased lower ICSS rates maintained by lower 

frequencies of stimulation. This generally agrees with the rate dependence of acute 

morphine effects in previous studies using other schedules of reinforcement and other 

consequent stimuli. For example, morphine primarily decreased food-maintained 

response rates maintained under different schedules of reinforcement in rats, and these 

effects were rate-dependent insofar as high rates were decreased more than low rates 

(Thompson et al., 1970). Acute morphine has been reported to increase low response 

rates maintained during the early segments of fixed-interval schedules or under a 

differential-reinforcement-of-low-rates- of-responding schedule (McMillan and Morse, 

1967; Ford and Balster, 1976), although these rate-increasing effects may be 

dependent on the consequent stimulus (McKearney, 1980). In chapter 2, low doses of 

acute morphine also occasionally increased response rates, but these effects were not 

rate-dependent and were most evident for intermediate ICSS rates maintained by 

intermediate frequencies of brain stimulation. Morphine exposure associated with longer 

pretreatment times or with repeated morphine treatment produced qualitative and 

quantitative changes in the rate dependency of morphine effects, increasing the 

correlation coefficients and slopes of rate-dependency plots and shifting these plots 
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vertically upward such that morphine primarily increased low rates of ICSS rather than 

decreasing high rates of ICSS. In this regard, morphine effects after repeated morphine 

qualitatively resembled rate-dependent effects of central nervous system stimulants 

such as amphetamine (Sanger and Blackman, 1976; Do Carmo et al., 2009; Bauer et 

al., in press). To our knowledge, this is the first study to report a change in rate-

dependent effects of morphine or any other mu opioid receptor agonist produced by 

repeated drug treatment. Moreover, insofar as stimulant-like and rate-dependent 

facilitation of ICSS is predictive of abuse liability, these findings are consistent with the 

hypothesis that the abuse liability of morphine increases with repeated exposure (Negus 

et al., 2006; Bauer et al., in press). 

 

7.6. Effects of opioids on acid-depressed ICSS (phase 2) 

Morphine and other mu agonists are potent analgesics, and they are used for 

severe and chronic pain conditions. In this project, these drugs were tested in an assay 

of pain-depressed behaviors in rats that was used previously to study morphine (Pereira 

Do Carmo et al., 2009), and as in that original study, results were compared to results 

from an assay of pain-stimulated behavior.  Specifically, intraperitoneal injection of 1.8% 

lactic acid served as an acute noxious visceral stimulus to stimulate a stretching 

response and depress ICSS. The original hypothesis was that mu opioid agonists, 

which are effective clinically to treat pain, will block acid-stimulated stretching and acid-

induced depression of ICSS. 

In this study, all mu opioid agonists produced a dose-dependent decrease in 

acid-stimulated stretching. The antinociceptive effects observed in this assay were 
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similar to antinociceptive effects of mu opioid agonists in many other assays of pain-

stimulated behavior, and such data have often been interpreted as evidence of 

analgesic effects of mu agonists. However, exclusive reliance on pain-stimulated 

behaviors to evaluate effects of opioids or other candidate analgesics is problematic for 

several reasons (Negus et al., 2006). Most importantly, drug-induced decreases in pain-

stimulated behavior can be produced not only by a selective reduction in sensory 

sensitivity to the noxious stimulus (i.e. true analgesia) but also by nonselective effects 

such as motor impairment (resulting in “false positive” effects).  Insofar as mu agonists 

are known to function as clinically effective analgesics under a wide variety of 

conditions, including the treatment of visceral pain (Yuan et al., 2010; Carter and Green, 

2011; O'Connor and Rao, 2012), we anticipated that mu agonists would also produce 

antinociception in assays of pain-depressed behavior. 

 Accordingly, drugs with variable efficacy at the mu receptor were tested to 

determine their potency to block acid-induced depression of ICSS. At first, all drugs 

were tested for their antinociceptive effect as a pretreatment to intraperitoneal injection 

of 1.8% lactic acid. During this phase, all mu agonists produced dose-dependent 

blockade of acid-induced depression of ICSS. This is consistent with their efficacy to 

block acid-stimulated stretching in this study. Also, my findings are consistent with the 

ability of mu agonists to block many other examples of pain-depressed behavior 

produced by several other types of pain manipulation, such as pain-depressed feeding, 

and pain-depressed locomotion (Martin et al., 2004; Neubert et al., 2005; Neubert et al., 

2006). These findings suggest considerable generality in the ability of mu agonists to 

block pain-related depression of behavior.  
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 High-efficacy agonists like methadone produced inverted U shaped dose-effect 

curves such that peak blockade of acid-induced depression of ICSS was produced by 

intermediate doses, whereas higher doses produced weaker acid blockade, perhaps 

because rate-decreasing effects of the high-efficacy agonist limited expression of 

antinociception. Moreover, high-efficacy agonists were generally more potent to block 

acid-induced depression of ICSS than acid-induced stimulation of stretching.  

Conversely, lower efficacy agonists produced only a monotonic and dose-dependent 

blockade of acid-induced ICSS depression across a broad dose range, and these drugs 

also tended to be less potent to block acid-induced depression of ICSS than acid-

induced stimulation of stretching. These results show the potential for efficacy-

dependent mu agonist effects in assays of pain-depressed vs. pain-stimulated behavior, 

but further studies will be required to assess generality across other mu agonists and to 

determine underlying mechanisms. 

 Phase two also included control experiments that examined effects of test drugs 

administered alone in the absence of noxious stimulation (open bars in figures 5.3; 5.4; 

5.5). Except for morphine, all drugs produced mild, but significant, facilitation of ICSS in 

the absence of lactic acid, suggesting that these drugs may produce non-selective 

facilitation of ICSS. These results may stand against their “selective” antinociceptive 

effects after lactic acid administration. However, three findings suggest that mu agonist 

blockade of acid-induced depression of ICSS was not due to non-selective facilitation of 

ICSS. First, non-opioid analgesics that are used to reduce pain in humans, such as 

NSAIDs, were also effective to block acid-induced depression of ICSS (Negus et al., 

2012). On the other hand, drugs that fail to produce analgesia in humans, such as 
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kappa opioid receptor agonists, failed to block acid effects in this assay (Wadenberg, 

2003; Negus et al., 2010; Negus et al., 2012). Second, all mu agonists were more 

efficacious to block acid-induced depression of ICSS than to facilitate ICSS in the 

absence of acid. For example, 0.1 mg/kg methadone produced a 20% increase in ICSS 

compared to vehicle when given as a pretreatment to acid vehicle (open bars; figure 

5.3). However, when the same dose was administered prior to 1.8% lactic acid, it 

produced a 38% increase in ICSS compared to vehicle (filled bars; figure 5.3). This 

suggests that non-selective facilitation is not sufficient to explain blockade of acid-

depressed ICSS. Third, the magnitude of opioid-induced facilitation of ICSS in the 

absence of acid (in these opioid naïve rats) is modest compared to other drugs, such as 

stimulants. For instance, cocaine failed to block acid-induced depression of ICSS at 

doses that significantly facilitated ICSS (Negus et al., 2012), and a high dose that did 

block acid-induced depression of ICSS also produced more than a 50% increase in 

ICSS in the absence of acid. Mu agonists did not produce the same profile as cocaine, 

and all of them produced antinociception at doses that did not affect ICSS, or that only 

mildly facilitated ICSS.  

 The ability of high-efficacy mu opioid agonists (methadone, fentanyl, and 

hydrocodone) to facilitate ICSS under control conditions in figures 5.3 and 5.4 was 

surprising and did not agree with previous findings shown in chapters 3 and 4, where 

high-efficacy ligands tended to depress ICSS at high doses with little or no evidence of 

ICSS facilitation at low to intermediate doses. Two factors may contribute to this 

difference. First, although each drug was tested in a separate group of naïve rats, each 

drug dose was given twice during phase 2, once prior to acid vehicle, and once prior to 
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1.8% lactic acid, whereas each drug dose was administered only once during phase 1. 

As shown in chapter 3, a history of intermittent opioid administration enhances the 

expression of rate-increasing effects, and subjects in phase 2 received double the 

injections that subjects in phase 1 were receiving. Second, subjects in phase 2 also 

received intermittent exposure to a noxious stimulus of 1.8% lactic acid, which might 

enhance the release of endogenous opioids (Kamata et al., 1986), and this in turn might 

contribute to the enhancement of rate-increasing effects produced by exogenous mu 

agonists.  

  

7.7. Manipulation of noxious stimulus intensity (phase 2) 

 In the previous section, low- and high-efficacy mu opioid agonists were effective 

to produce antinociception when 1.8% lactic acid was used as the noxious stimulus. 

Preclinical research with assays of pain-stimulated behavior suggests that low efficacy 

analgesics may become ineffective to induce antinociception when a high-intensity 

noxious stimulus is used (Morgan et al., 1999; Negus and Mello, 1999; Cook et al., 

2000). Likewise, high efficacy mu agonists are preferred over low-efficacy ligands in 

severe cases of pain (Prommer and Ficek, 2012).  In the present study, using 5.6% 

lactic acid was intended to increase the intensity of the noxious stimulus.  

The failure of 5.6% acid to produce significant stimulation of stretching is 

consistent with previous findings (Pereira Do Carmo et al., 2009), and this finding can 

produce greater behavioral depression that reduces not only normally adaptive 

behaviors such as locomotion, but also pain-stimulated behaviors (Stevenson et al., 

2009). On the other hand, lactic acid produced a concentration-dependent decrease in 
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ICSS, and this is consistent with intensity-dependent effects of other noxious stimuli on 

other pain-depressed behaviors such as food-maintained operant responding (Neubert 

et al., 2005). Consequently, it was possible to test opioid antinociception in the assay of 

acid-depressed ICSS but not in the assay of acid-stimulated stretching when the 

noxious stimulus was 5.6% lactic acid.  

The original hypothesis was that an increase in noxious stimulus intensity would 

produce a greater decrease in the potency and/or maximal effect of a low-efficacy mu 

agonist than of a high-efficacy mu agonist. This hypothesis was derived from principles 

of receptor theory and from previous findings that related drug efficacy at the mu 

receptor to the intensity of the noxious stimulus (for review; McCormack et al., 1998), 

although all of these findings relied exclusively on assays of pain-stimulated behavior to 

test antinociception. Figure 7.1 summarizes this theory of possible outcomes due to an 

“efficacy X noxious stimulus intensity” interaction.  
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Figure 7.1. Simplified cartoon summarizes the effect of noxious stimulus intensity 

on two hypothetical drugs that differ in their intrinsic efficacy at the mu receptor. For 

further clarification, “DRUG A” represents a high-efficacy ligand (e.g. methadone), and 

“DRUG B” represents a low-efficacy ligand (e.g. nalbuphine). Low, Medium, and High 

indicate the intensity of the noxious stimulus. Adapted from (McCormack et al., 1998). 
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In agreement with the hypothesis, the maximally effective methadone dose 

against 1.8% acid (0.1 mg/kg) lost its antinociceptive effect after increasing the acid 

concentration, but 1.0 mg/kg methadone was effective. Similarly, the maximally effective 

nalbuphine dose against 1.8% acid (1.0 mg/kg) also lost its antinociceptive effect at the 

higher acid concentration, but a higher nalbuphine dose of 10 mg/kg was effective.  

Overall, the increase in noxious stimulus intensity produced a 10-fold decrease in 

methadone potency and larger 15-fold decrease in nalbuphine potency without reducing 

the maximal effect of either drug (table 5.1). Taken together, these results support our 

hypothesis of greater potency reductions for the low- vs. high-efficacy mu agonist; 

however, the magnitude of the difference across drugs was modest especially if 

compared to previous findings with assays of pain-stimulated behavior. For example, 

Morgan et al.  compared antinociceptive effects of morphine and the lower efficacy mu 

agonist buprenorphine in Lewis rats tested with a warm-water tail-withdrawal assay 

(Morgan et al., 1999). Both morphine and buprenorphine produced dose-dependent and 

complete antinociception at a stimulus intensity of 50°C.  Increasing the stimulus 

intensity to 56°C reduced morphine potency by approximately 5-fold, but buprenorphine 

potency was reduced more than 30-fold, and the maximal effect of buprenorphine was 

also reduced. Thus, the increase in thermal stimulus intensity in that assay of pain-

stimulated behavior resulted in greater dissociation in antinociceptive effects of high- vs. 

low-efficacy mu agonists than the increase in chemical noxious stimulus intensity in the 

present assay of pain-depressed behavior.  

The reason for the small difference in effects of stimulus intensity on low- vs. 

high-efficacy mu agonist antinociception is not known.  One possibility is that opioid 
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antionociception in this assay of pain-depressed behavior has a relatively low efficacy 

requirement, such that relatively large increases in noxious stimulus intensity may be 

required to reduce maximum effects even of low-efficacy agonists.  Consistent with this 

possibility, mu agonists are generally much more potent in this assay of acid-depressed 

ICSS (e.g. morphine ED50=0.124 mg/kg SC) than in thermal nociceptive assays of 

pain-stimulated behavior (e.g. morphine ED50=2.53 mg/kg IP in Lewis rats tested at 

50°C; Morgan et al., 1999).  In a related possibility, as mentioned in the section 1.5, 

lactic acid releases free protons that activate TRPV1 receptors and/or acid sensing ion 

channels located in the peritoneal region. The expectation is that an increase in acid 

concentration from 1.8 to 5.6% will activate more receptors, and hence produces more 

nociceptor activation. However, it is possible that 5.6% acid is not a high enough 

stimulus to dissociate between high- and low-efficacy opioids in ICSS. As a suggested 

future experiment, a higher acid concentration or a different noxious stimulus could be 

used to dissociate between methadone and nalbuphine effects on pain-depressed 

ICSS. One limitation, however, in using higher acid concentration is the possible lethal 

outcomes, which limit the number of test sessions conducted for each rat.  

In this study, both methadone and nalbuphine produced antinociception after 

low- and high- acid concentrations. Due to their sedative effects, high-efficacy ligands 

produce a greater depression in behavior than low-efficacy mu agonists such as 

locomotion or operant responding. This was observed in this study during phase 1, 

where methadone but not nalbuphine produced dose-dependent rate-decreasing effects 

in ICSS in naïve subjects (figure 3.3), and during phase 2 after high doses of 

methadone, fentanyl, and morphine. In pain-stimulated behaviors, it is possible that 
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high-efficacy ligands produce antinociception during high-noxious stimulus intensity 

through “true” analgesia, or through a general decrease in behavior (false positive), or 

both. The same concept does not apply to assays of pain-depressed behavior, such 

that increasing the dose of the high-efficacy ligand will recruit some of their rate-

decreasing effects, and this may obscure analgesic efficacy. 

A suggested experiment to further dissociate between low- and high-efficacy mu 

agonists in assays of pain-depressed ICSS is by inducing tolerance to the rate-

decreasing effects by repeated administration of a mu agonist, such as morphine. As 

discussed during phase 1, repeated morphine produced tolerance to the rate-

decreasing effects of high-efficacy mu agonists. Also, repeated morphine did not 

produce tolerance to their rate-increasing effects, and in fact, it enhanced expression of 

rate-increasing effects produced by both low- and high-efficacy mu agonists. Repeated 

morphine can produce desensitization of mu receptors at different brain areas (Sim et 

al., 1996). Thus, by decreasing the total number of functional mu opioid receptors in the 

brain, it is possible to dissociate between the low- and high-efficacy ligands to produce 

antinociception in assay of pain-depressed ICSS. Consequently, antinociceptive effects 

of methadone and nalbuphine could be determined in the presence and absence of 

1.8% lactic acid in rats that were treated with chronic morphine. Since a) high-efficacy 

ligands are effective to treat severe pain in the clinic, and b) they are also effective to 

produce antinociception is assays of pain-stimulated behaviors during high-noxious 

stimulus intensities in preclinical studies, I predict that methadone will maintain its 

efficacy to produce antinociception in the assay of acid-depressed ICSS, while the 

antinociceptive effects of nalbuphine will be more sensitive to repeated morphine 
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treatment and will not block acid-induced depression of ICSS under the same 

conditions.   

 

7.8. Morphine antinociception after repeated administration (phase 2)  

 Chapter 6 tested the antinociceptive effects of morphine in acid-stimulated 

stretching and acid-depressed ICSS after repeated chronic morphine administration. 

One possibility for opioid-induced antinociception is that many drugs, including high-

efficacy mu agonists, can produce behavioral depressant effects that might augment 

apparent antinociception in assays of pain-stimulated behavior (in which antinociception 

is indicated by a depression of the target behavior). On the other hand, behavioral 

depressant effects could actually oppose and limit expression of antinociception in an 

assay of pain-depressed behavior (in which antinociception is indicated by increases in 

the target behavior). During phase 1, repeated morphine produced tolerance to its own 

rate-decreasing effects. If rate-decreasing effects contribute to morphine-induced 

antinociception in assays of pain-stimulated behavior, then repeated morphine might 

also produce tolerance to morphine effects in these assays. Conversely, if rate-

decreasing effects do not contribute to morphine antinociception in assays of pain-

depressed behavior, then repeated morphine might not produce tolerance to morphine 

antinociception in these assays; rather, repeated morphine might even enhance 

antinociception in these assays by producing tolerance to rate-decreasing effects that 

initially oppose and limit expression of antinociception. Thus, the hypothesis was that 

morphine would maintain or increase its antinociceptive potency in the assay of acid-

induced depression of ICSS, but that tolerance would develop to morphine 
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antinociception in the assay of acid-stimulated stretching. Results from this study agree 

with this hypothesis. 

 The development of tolerance to the antinociceptive effect of morphine in acid-

stimulated stretching is consistent with previous reports of opioid antinociceptive 

tolerance in acid-stimulated stretching and other assays of pain-stimulated behavior (Su 

et al., 2000; Dong et al., 2006; Trang et al., 2009). On the other hand, morphine 

antinociception was resistant to tolerance in the assay of acid-depressed ICSS. This is 

the first evaluation of effects produced by repeated morphine in an assay of pain-

depressed behavior.  However, these results with morphine are similar to previous 

findings with the delta agonist SNC80, showing that SNC80 pretreatment produced 

acute tolerance to the antinociceptive effects of SNC80 in the assay of acid-stimulated 

stretching but actually enhanced expression of SNC80 antinociception in the assay of 

acid-depressed ICSS (Negus et al., 2012). These data suggest that morphine 

antinociception is more vulnerable to tolerance in the assay of acid-stimulated stretching 

than in the assay of acid-depressed ICSS.  

The development of tolerance depends on the drug that is administered 

chronically, the daily-injection dose and treatment regimen, and the duration of repeated 

treatment. In this study, escalating doses of morphine were administered chronically for 

1 week, and this regimen was sufficient to induce tolerance in acid-stimulated 

stretching. Repeated morphine administration enhances the expression of abuse-

related rate-increasing effects of morphine (Altarifi and Negus, 2011; Altarifi et al., 

2012), and this is not likely to account entirely for tolerance-resistance in the assay of 

acid-depressed ICSS for two reasons. First, the chronic morphine regimen used in the 
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antinociceptive tolerance study involved the administration of lower morphine doses for 

a shorter period of time compared to the regimen used in phase one (10 mg/kg/day for 

7 days compared to 3.2-18 mg/kg/day for 28 days, respectively), and hence, less 

enhancement to the rate-increasing effect of morphine compared to phase 1. Second, 

1.0 mg/kg morphine was the dose to produce antinociception in both groups, and this 

dose produced mild facilitation of ICSS in the chronic morphine treated group (16% 

increase versus acid vehicle). However, the same dose facilitated ICSS by 42% (versus 

acid alone) when administered prior to 1.8% acid.  

It is possible that morphine antinociception in pain-stimulated stretching and acid-

depressed ICSS is mediated through distinct mu opioid receptor populations that may 

respond differentially to chronic morphine. For example, repeated morphine 

administration produces desensitization (Ferguson, 2001) and downregulation (Kieffer 

and Evans, 2002) of the mu opioid receptor, and chronic morphine treatment selectively 

decreased mu agonist-stimulated G-protein activation in brainstem nuclei but not in the 

forebrain structures (including NA and amygdala) thought to contribute to the stimulant 

effects of opioids (Sim et al., 1996). Thus, it is possible that morphine-induced 

antinociception in acid-depressed ICSS is mediated through these desensitization-

resistant receptors in the forebrain structures.  

The absence of tolerance development to morphine in the assay of acid-

depressed ICSS is paralleled by clinical findings indicating that opioids can maintain 

analgesic efficacy for treatment of chronic and severe pain (Watson, 2012). Tolerance is 

defined as a decrease in subject`s reaction to a specific drug or concentration, that 

requires an increase in drug concentration to achieve the same desired effect. 
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Tolerance to a drug effect may develop due to pharmacological reasons (such as 

receptor desensitization), or pathological reasons (such as disease progression). Many 

clinical studies showed that subjects who are maintained on relatively constant doses of 

opioids in healthy individuals (Cooper et al., 2012) as well as in patients who suffer from 

chronic pain (Cowan et al., 2001) do not show any signs of analgesic tolerance. 

Although opioid dose escalation is necessary in some cases to maintain analgesic 

effectiveness of opioids (Collett, 1998), this loss of analgesia is often related to factors 

other than pharmacological tolerance, including disease progression (Portenoy, 1994; 

Portenoy and Savage, 1997).  

A final interesting finding in chapter 6 is the enhancement of stretching and 

exacerbation (although not significant compared to control group) of acid-induced 

depression of ICSS in the repeated morphine treated group. This is qualitatively similar 

to hyperalgesia that has been shown to develop in other preclinical assays such as tail 

flick and paw withdrawal after repeated morphine treatment (Dong et al., 2006; Ross et 

al., 2012; Wei and Wei, 2012). Also, this repeated morphine-induced hyperalgesia was 

also reported in clinical settings, where patients receiving opioids for the treatment of 

pain may actually become more sensitive to pain (De Conno et al., 1991; Chu et al., 

2008). In the current study, morphine, lactic acid, or their vehicles were administered 24 

hrs after the last daily morphine injection on the previous day. Subjects during this 

period are possibly in a spontaneous-withdrawal period. Although the direct mechanism 

of such pain-exacerbation is not exactly known, multiple molecular mechanisms may be 

involved in such morphine-induced hyperalgesia. 
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One possibility for this morphine-induced hyperalgesia is the enhancement of 

TRPV1 channel current during repeated morphine treatment, as shown previously by 

Ross et al 2012 (Ross et al., 2012). In the same study, they also showed that repeated 

morphine administration is associated with hyperexcitability and functional remodeling 

of sodium channels in sensory neurons. Another possibility is that repeated morphine 

treatment may activate the descending pain facilitation arising in the RVM (Vanderah et 

al., 2001). A final possibility is an alteration in opioid receptor signaling after chronic 

opioid administration, such that there is a shift in opioid receptor G-protein signaling 

from predominantly Gi/o inhibitory to Gs stimulatory following chronic in vivo morphine 

exposure (Crain and Shen, 2000; Gintzler and Chakrabarti, 2000).  

 

7.9. Conclusions and future directions 

The main purpose of the above studies was to validate intracranial self-

stimulation as an assay of pain-depressed behavior in preclinical research. The goal 

was to find a novel animal model to measure pain-related changes in behavior in 

preclinical research, which may generate better predictive validity outcomes to the 

clinic. Morphine and other opioids were tested in these studies due to their known 

analgesic efficacy in the clinic. Opioid pharmacology was studied in ICSS, and in an 

assay of pain-stimulated behavior. The author predicts that assays of pain-depressed 

behavior in animal research may provide a better “translational” tool to examine 

analgesic properties of candidate drugs in animals. A good analgesic would block pain 

in both assays, and may also be less susceptible to analgesic tolerance after chronic 

administration.  By using these assays of pain-stimulated and pain-depressed behavior 
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and comparing effects of novel drugs to effects of opioid analgesics, it may be be 

possible to identify new candidate analgesics that have less abuse-potential than 

opioids (i.e. do not facilitate ICSS). 

One limitation for using ICSS as a behavioral baseline in assays of pain-

depressed behavior is its sensitivity to stimulant effects of test drugs. Although this 

assay has been useful to test abuse-related stimulant effects of new drugs, drugs that 

produce non-selective facilitation of ICSS in the absence and presence of noxious 

stimulus may fail to produce analgesia in humans. Thus, one suggested future 

experiment is to investigate other behavioral baselines that may be less susceptible to 

false-positive results, such as pain-depressed feeding and pain-depressed social 

interaction. Another possible future direction is to test different types of pain modalities 

that would be more clinically relevant, such as cancer pain and chronic pain. 

Finally, a good strategy to enhance pain management is either to find alternative 

analgesics to the ones that are currently used in the clinic, or to minimize the 

disadvantages of currently used analgesics. Opioids are widely used in the clinic, but 

they also have a high abuse potential. The above studies enhanced our knowledge of 

some of the factors that could possibly be involved in opioid addiction.  Future studies 

could build on this information by seeking strategies to retain analgesic effects of mu 

agonists while reducing abuse liability. For example, delta-opioid agonists (such as 

SNC80) showed promising results to produce antinociceptive effects in assay of pain-

depressed behavior with less abuse-liability compared to mu agonists. These drugs 

could potentially replace or minimize the dose required of mu opioid agonist to produce 

clinical analgesia.
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